
Problem Set # 1 – Solutions

Amanda B. Chatterton, OPTI 210 TA

February 3, 2020

OPTI 210, Fall 2020 Problem Set 1 Prof. M. Kolesik

Due: Beginning of class, Wednesday January 29th (20 points)

1. This problem deals with aspects of vector analysis. Three vectors are specified as follows:
~A = 2̂i+ 5ĵ, ~B = î− 4ĵ + 2k̂, and ~C = Cxî+ Cy ĵ.

(a - 1pt) Given that the vectors ~A and ~C are orthogonal and that ~C is a unit vector, calculate values
for Cx and Cy.

Recall
~A · ~B = | ~A|| ~B| cos(θ)

where θ is the angle between the vectors. Therefore, we use cos(0) = 1 for parallel vectors and
cos(90) = 0 for orthogonal vectors.

Note: The familiar notation of
x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1

is analogous to
î · î = ĵ · ĵ = k̂ · k̂ = 1

Therefore:
~A · ~C = 2Cx + 5Cy

Given that ~A and ~C are orthogonal vectors, their dot product equals zero:

~A · ~C = 0 = 2Cx + 5Cy

Knowing this enables us to eliminate 1 unknown variable in terms of the other

Cx = (−5/2)Cy

Additionally, we are given that ~C is a unit vector so

C2
x + C2

y = 1

Plugging in
Cx

2 = ((−5/2)Cy)
2 = (−5/2)2Cy
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To solve for Cy
(−5/2)2Cy

2 + Cy
2 = 1

((25/4) + 4/4)Cy
2 = 1

Cy
2 = 4/29

Thus, Cy = ±
√

4/29

In a similar manner, we can then plug this result into our original equation to eliminate Cy and
solve for Cx algebraically Yielding Cx = ∓

√
25/29, Cy = ±

√
4/29).

(b - 1pt) Without resort to calculation provide an example of a unit vector that is automatically
orthogonal to both ~A and ~C.

Both ~A and ~C are in the î-ĵ plane so any vector that has only a component in the k̂ direction will
be orthogonal to ~A and ~C. Since the vector we want has to have unit magnitude we just choose
k̂ or −k̂.

Alternatively we could just construct a vector: ~A× ~C/| ~A× ~C|

(c - 1pt) Calculate the scalar product of ~A and ~B.

~A · ~B = (2)(1) + (5)(−4) + (0)(2) = 2− 20 = −18

(d - 1pt) Calculate the cross product of ~A and ~B.

~A× ~B = [(5)(2)− (−4)(0)]̂i+ [(0)(1)− (2)(2)]ĵ + [(2)(−4)− (5)(1)]k̂ = 10̂i− 4ĵ − 13k̂

(e - 1pt) Calculate angle θ between ~A and ~B.

~A · ~B = | ~A|| ~B| cos(θ)

so

θ = cos−1

(
~A · ~B
| ~A|| ~B|

)

Plugging in | ~A| =
√

22 + 52 =
√

29, | ~B| =
√

12 + (−4)2 + 22 =
√

21

θ = cos−1

(
~A · ~B
| ~A|| ~B|

)
= cos−1

(
−18√
29
√

21

)
≈ 2.388 radians ≈ 136.8 degrees

2. Scalar function h is given like so:

h(x, y) = 10(2xy − 3x2 − 4y2 − 18x+ 28y + 12),

(a - 1pt) Calculate the gradient of h
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The gradient of a scalar field is a (generally complex) vector field.

∇h = î∂xh+ ĵ∂yh = 10(−6x+ 2y − 18)̂i+ 10(−8y + 2x+ 28)ĵ

(b - 1pt) Calculate the Laplacian of h

To calculate the Laplacian, we perform a dot product between the del operator and our result
from part (a). Since we are then calculating the divergence of a vector field, we obtain a scalar
field result.

∇ · ∇h = ∂2xh+ ∂2yh = ∂x(10(−6x+ 2y − 18)) + ∂y(10(−8y + 2x+ 28)) = −60 +−80 = −140

3. Vector function ~F is given like so:

~F (x, y) =

(
y√

x2 + y2
(x2 + y2)k

)
î−

(
x√

x2 + y2
(x2 + y2)k

)
ĵ,

(a - 1pt) Calculate divergence of ~F

We can solve this using either by using a substitution before our operations or via direct compu-
tation. Although the former makes solving part (a) a bit more complex, if you use this method it
will make part (b) simpler. Alternatively if you use the latter, straight forward method, part b
will be more complicated.

Method 1: Let’s start by rewriting ~F as:

~F (x, y) = yr2k−1î− xr2k−1ĵ

With the substitution r =
√
x2 + y2 because this makes sense geometrically (r is the radius in

the x-y plane). Applying the chain rule:

∂xr
n =

2xnrn−1

2r
= xnrn−2 and ∂yr

n =
2ynrn−1

2r
= ynrn−2

Thus, we can calculate ∇ · ~F as:

∇ · ~F = (∂xî+ ∂y ĵ) · (yr2k−1î− xr2k−1ĵ) = (2k − 1)xyr2k−3 − (2k − 1)xyr2k−3 = 0

Method 2: Alternatively you can just use the straight forward method of applying the chain rule:

∇ · ~F = y∂x(x2 + y2)k−1/2 − x∂y(x2 + y2)k−1/2

which simplifies to

∇ · ~F = (2k − 1)yx(x2 + y2)k−3/2 − (2k − 1)yx(x2 + y2)k−3/2 = 0

(b - 1pt) Calculate curl of ~F (Note: think before calculating, you may want to simplify first.)
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∇× ~F = (∂yFz − ∂zFy )̂i+ (∂zFx − ∂xFz)ĵ + (∂xFy − ∂yFx)k̂ = (∂xFy − ∂yFx)k̂

So now we just need to do some product rule work:

Using Method 1:

∇× ~F = [∂x(−xr2k−1)− ∂y(yr2k−1)]k̂ = −r2k−1 − (2k − 1)x2r2k−3 − r2k−1 − (2k − 1)y2r2k−3k̂

Which simplifies to:

∇× ~F = −[2r2k−1 + (2k − 1)(x2 + y2)r2k−3] = −(2k + 1)r2k−1k̂

Using Method 2:
∇× ~F = −(2k + 1)(x2 + y2)k−1/2k̂

(c - 1pt) Decide if ~F has a potential, i.e. if there exists a function U such that ~F = ∇U .

Suppose that ~F had a potential U such that ~F = ∇U . For reference:

~F (x, y) =

(
y√

x2 + y2
(x2 + y2)k

)
î−

(
x√

x2 + y2
(x2 + y2)k

)
ĵ

Then
∇× ~F = ∇×∇U(x, y) = −(2k + 1)(x2 + y2)k−1/2k̂

For there to be a U ~F would need to be a conservative vector field. For this to happen, k = −1/2.
For k = −1/2:

~F (x, y) = y/(x2 + y2)̂i− x/(x2 + y2)ĵ

So now if U exists, then U =
∫
y/(x2 + y2)dx = tan−1(x/y) + C because ∂xU = Fx. However U

must also be
∫
−x/(x2 + y2)dy = − tan−1(x/y) + C because ∂yU = Fy. These two statements

can not simultaneously be true, therefore there is no such U .

4. This problem deals with the use of complex numbers and the Euler formula

(a - 1pt) Calculate the magnitude and phase of the complex number z = 9− 12i.

The magnitude of a complex number z is |z| =
√
z∗z. For arbitrary but real a and b, with

z = a+ ib,

(a− ib)(a+ ib) = a2 + iab− iab+ b2 = a2 + b2 > 0

Here we just need

z∗z = 92 + (−12)2 = 81 + 144 = 225, |z| =
√

225 = 15

For the phase we just need to understand that z can be expressed in the form z = Aeiθ for real
A > 0. We know that A = 15 and that the real part is 9. This means:

15 cos(θ) = 9, θ = cos−1(9/15) ≈ −0.927 rad ≈ −53.13 degrees
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We know the minus sign has to be there because the y component is negative (-12)

(b - 1pt) Show that the magnitude of a complex number in the form

z =
a+ ib

a− ib

is always equal to one for for real a and b. We shall encounter such form for the reflection coefficient
in the total internal reflection...

|z|2 = z∗z =
a− ib
a+ ib

a+ ib

a− ib
=
a2 + b2

a2 + b2
= 1

(c - 1pt) By expressing the complex function Ae−iωt (ω is real) in terms of its real and imaginary
parts, with A = Ar + iAi complex, show that the magnitude of the complex function is given by |A|.

Ae−iωt = Acos(−ωt)︸ ︷︷ ︸
Ar

+i Asin(−ωt)︸ ︷︷ ︸
Ar

|Ae−iωt| =
√
A2[cos2(−ωt)2 + sin2(−ωt)] = |A|

(d - 2pts) Using complex notation, prove that sin(3θ) = [3 cos2(θ) sin(θ) − sin3(θ)], (Hint: You will
want to make use of this: e3iθ = (eiθ)3).

We start by noticing that sin(3θ) is the imaginary part of ei3θ. The hint tells us that e3iθ = (eiθ)3

and we are looking to get an expression purely in terms of sines and cosines of θ. Therefore we
start by expanding:

ei3θ = cos(3θ) + i sin(3θ) = eiθ
3

eiθ
3

= (cos(θ) + i sin(θ))3 = cos3(θ) + 3i cos2(θ) sin(θ)− 3 cos(θ) sin2(θ)− i sin3(θ)

Now looking at only the imaginary part we have:

sin(3θ) = [3 cos2(θ) sin(θ)− sin3(θ)]
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