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Abstract. The purpose of this article is to provide practical introduc-
tion into numerical modeling of ultrashort optical pulses in extreme
nonlinear regimes. The theoretic background section covers derivation
of modern pulse propagation models starting from Maxwell’s equations,
and includes both envelope-based models and carrier-resolving propa-
gation equations. We then continue with a detailed description of im-
plementation in software of Nonlinear Envelope Equations as an exam-
ple of a mixed approach which combines finite-difference and spectral
techniques. Fully spectral numerical solution methods for the Unidirec-
tional Pulse Propagation Equation are discussed next. The modeling
part of this guide concludes with a brief introduction into efficient im-
plementations of nonlinear medium responses. Finally, we include sev-
eral worked-out simulation examples. These are mini-projects designed
to highlight numerical and modeling issues, and to teach numerical-
experiment practices. They are also meant to illustrate, first and fore-
most for a non-specialist, how tools discussed in this guide can be
applied in practical numerical modeling.

1 Introduction

As femtosecond lasers become available to many groups, simulation of propagation
of optical pulses of ultra-short duration and their interaction with media gains new
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importance. Modern experiments can barely exist without the support from modeling
and simulation in order to understand and interpret measured data. This is especially
true as nonlinear optics continues to explore ever more extreme regimes [1–4].
As a result of this development, the need to perform sophisticated simulations

widens considerably. However, the development of software for numerical experiments
requires specific knowledge, time and means that too often constitute a barrier be-
tween practitioners of real experiments and their modeling needs.
Fortunately, simulation in ultrafast nonlinear optics has reached a degree of ma-

turity at which it makes sense for the community to have certain standard tools that
can be used in support of state of the art experiments. Alongside researchers mainly
involved in computer simulation, informed non-specialists have been more and more
engaged in numerical modeling [5,6]. In line with these trends, this paper targets all
researchers, teachers and students working in the field of ultrafast nonlinear optics,
who need to perform numerical simulation with proper understanding of modeling,
implementation, and numerical issues. Our main aim is to provide a practitioner’s
guide to this wide audience. This is therefore a didactic- and instruction-motivated
text which combines a detailed overview including necessary theoretical background,
and a number of opportunities to hone practical skills through a set of exercises.
The physics governing the effects we aim to understand and model in ultrafast

nonlinear optics belong to several broader fields: classical and quantum optics, elec-
tromagnetism, plasma physics, solid state physics. This rich physics results from laser-
matter interaction in the ultrashort pulse regime, i.e. with sub-picosecond durations
(T ≤ 10−12 s), typically produced by the Chirped Pulse Amplification technique [7].
Nowadays, lasers that produce extremely powerful (1PW ≡ 1015W) ultrashort pulses
are developed. Very high light intensities in these pulses induce extreme nonlinear ef-
fects in any condensed material or gaseous medium. In this paper, we do not consider
ultra-intense laser fields corresponding to the highest intensities achievable today (e.g.
by tight focusing on a target the most powerful ultrashort laser pulses). Instead, we

concentrate on the regime of intensities up to 1015W/cm
2
obtained e.g. by focusing a

pulse with power in the MW-TW range in a transparent dielectric medium (gas, liq-
uid or solid). Our rationale is that in this regime, the propagation effects can be, and
indeed are, as significant as the interaction effects. Laser-matter interaction at these
intensities can induce nonlinear refraction index change or lead to partial ionization
of the dielectric medium, however we do not consider the regime of interaction with
fully ionized plasmas. Another boundary in nonlinear optics is given by the definition
of ultrashort, or sub-picosecond times; they typically correspond to time scales above
which the response of matter to laser excitation starts to involve heat transfer, relax-
ation processes and hydrodynamic phenomena. The pulse durations we consider are
shorter than the time scales for these phenomena.
Ultrashort laser pulse filamentation constitutes an example of physical phenomena

in ultrafast nonlinear optics where approaches described in this guide apply particu-
larly well. It denotes a specific regime of nonlinear propagation of intense laser pulses
I ∼ 1013–1014W/cm2 with narrow beam widths, over distances much larger than a
typical diffraction length. The reader is referred to Ref. [8] for the discovery of this
phenomenon and to Ref. [3] for a detailed review of the rich physics it involves. Here
we describe methods for the modeling of nonlinear laser pulse propagation that apply
in a broader context, and we will use ultrashort laser pulse filamentation as a concrete
context for illustrating a specific medium model plug-in for general pulse-propagation
models.
The paper is organized into three main sections covering (i) the theoretic back-

ground (Sec. 2), (ii) the description of model implementation (Sec. 3) and (iii) a
series of worked-out examples (Sec. 4). Section 2 starts from Maxwell’s equations and
presents the derivation of several families of propagation models suitable for nonlinear
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Table 1. Carrier-Resolved Propagation Equations: in the laboratory frame: ∂Ẽ
∂z

=

iKz(ω,k⊥)Ẽ + iQ(ω,k⊥) P̃2ε0 , in the local pulse frame:
∂Ẽ
∂ζ
= i(Kz(ω,k⊥) − ω

vg
)Ẽ +

iQ(ω,k⊥) P̃2ε0 . UPPE: Unidirectional Pulse Propagation Equation. FME: Forward Maxwell
Equation. FWE: Forward Wave Equation: FOP: First-Order Propagation equation. UA:
Unidirectional Approximation. MA: Minimal Approximation. SEWA: Slowly Evolving Wave
Approximation. P: Paraxial. ND: No Dispersion.

Eq. Ref. Approximation Kz(ω,k⊥) Q(ω,k⊥)

UPPE [5,10] UA
√
k2(ω)− k2⊥

ω2

c2
√
k2(ω)− k2⊥

FME [11] SEWA, P k(ω)− k2⊥
2k(ω)

1

n(ω)

ω

c

FWE [12,13] MA, P k(ω) +
vg

2ω
[(k(ω)− ω

vg
)2 − k2⊥] vg

c

ω

c

FOP [14] SEWA, P, ND
ω

c
− ck

2
⊥
2ω

ω

c

optics in regimes where Maxwell’s equations are intractable. It introduces envelope
models describing the propagation of laser pulses with many optical cycles as well as
carrier-resolving pulse propagation models suited for few-cycle pulses. Section 3 deals
with translation of theoretical models into simulation software. It shows how to im-
plement propagation models by means of numerical algorithms that apply to a broad
class of physical problems, namely those which exhibit a well-defined propagation
direction. In particular, we present methods valid for envelope as well as carrier-
resolving pulse propagation models, and discuss their advantages when the distance a
laser pulse travels along the propagation direction is much larger than the wavelength
and the dimensions of the pulse. Numerical implementation of medium-response mod-
els is treated in this section too, in particular for nonlinearities playing a role in the
physics of ultrashort laser pulse filamentation. Finally, Section 4 is organized in the
form of mini-projects that aim to introduce a non-specialist into simulations and let
him gain confidence through practical exercise.
As a concluding word for this introduction, we would like to comment on the

spirit of the presentation to help readers navigate the paper. This guide concentrates
on propagation equations that take a canonical form, namely (i) Nonlinear Envelope
Propagation Equations (listed in table 2) solved by combination of finite-difference
and spectral methods, and (ii) Carrier Resolving Propagation Equations (listed in
table 1) solved by purely spectral methods. 1 Our goal is to provide a self-contained
overview of the state of the art in numerical simulation of femtosecond optical pulses,
and, first and foremost, a practical way to embark on practical simulation. That is
why Section 3 was written in the way allowing for a step-by-step building of general
tools for numerical resolution of propagation equations, from the simplest to the most
elaborate models. We show how to decompose a problem at hand, i.e. construction
of a simulation engine into basic building blocks (e.g. linear propagation, nonlinear
source terms, etc). Then we progressively include specifics describing various linear
or nonlinear physical effects. Since partial differential equations of the same type
as the considered propagation equations are encountered in several fields of physics
(e.g., heat equation, advection-diffusion equations, amplitude equations in pattern

1 Solution methods presented for paraxial Nonlinear Envelope Propagation Equations also
apply to paraxial Carrier Resolving Propagation Equations.
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Table 2. Envelope Propagation Equations: in the laboratory frame: ∂Ẽ
∂z

=

i
(
K(Ω,k⊥) + Ω

vg

)
Ẽ + iQ(Ω,k⊥) P̃2ε0 , in the pulse frame: (Ω ≡ ω − ω0): ∂Ẽ∂ζ = iK(Ω,k⊥)Ẽ +

iQ(Ω,k⊥) P̃2ε0 , where κ(ω) ≡ k0 + (ω − ω0)/vg and ω ≡ ω0 + Ω. FEE: Forward Envelope
Equation. NEE: Nonlinear Envelope Equation. LEE: Linear Envelope Equation. NLS: Non-
linear Schrödinger Equation. PC-NLS: Partially Corrected Nonlinear Schrödinger Equation.
P: Paraxial. MA: Minimal Approximation. GFEA: Generalized Few-cycle Envelope Approx-
imation. SEEA: Slowly Evolving Envelope Approximation. SEWA: Slowly Evolving Wave
Approximation. SVEA: Slowly Varying Envelope Approximation.

Eq. Ref. Approximation K(Ω,k⊥) Q(Ω,k⊥)
FEE P k(ω)− κ(ω)− k2⊥

2k(ω)

ω2

c2k(ω)

NEE [3] MA
k2(ω)− κ2(ω)
2κ(ω)

− k2⊥
2κ(ω)

ω2

c2κ(ω)

NEE [15] GFEA k(ω)− κ(ω)− k2⊥
2κ(ω)

ω2

c2κ(ω)

LEE [16] SEEA k(ω)− κ(ω)− k2⊥
2κ(ω)

0

NEE [17] SEWA k(ω)− κ(ω)− ck
2
⊥

2n0ω

ω

cn0

NLS [18] SVEA
k′′0Ω

2

2
− k

2
⊥
2k0

ω0

cn0

PC-NLS k(ω)− ck2⊥
2n0ω0

(2− ω
ω0
)

ω

cn0

formation problems, soliton propagation equations), the techniques taught here are
naturally applicable in many other fields.
This work is part of the 2011 edition of the Stella school [9]. Worked-out exam-

ples were executed by Stella students, and this part of the paper has been written
by students themselves. As such this work is a case study in what the Practitioner’s
Guide aims to foster.

1.1 List of Propagation Equations discussed in this guide

All propagation equations considered in this guide can be expressed in Fourier space
in a canonical form for unidirectional equations, either in the laboratory frame or in
a moving frame co-propagating with the pulse under examination. Propagation equa-
tions are furthermore subdivided into carrier-resolving propagation equations (see
table 1) and envelope propagation equations (see table 2), which all follow the
canonical form. The numerical methods we present are valid to solve all propaga-
tion equations listed in tables 1 and 2. Independently of the distinction between
carrier-resolving and envelope equations, we distinguished non-paraxial propagation
equations, which can only be solved in the spectral domain for space-and-time by
the method presented in section 3.2, from paraxial propagation equations which can
also be solved by various combinations of finite-difference and spectral methods pre-
sented in section 3.1. The method presented for solving non-paraxial equations applies
to paraxial equations, but the opposite is not true. Tables 1 and 2 list only scalar
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propagation equations but we show that vectorial propagation equations can also
be derived in the canonical form, thus our resolution methods extend to vectorial
propagation equations.

2 Theory

When viewed through the eyes of a computational physicist, Maxwell’s equations
appear to consist of three coupled components. Divergence equations express initial
conditions or constraints. They are automatically satisfied by any good numerical
method (for example, direct Maxwell solvers will preserve ∇ ·D = 0 as long as this
was the case for the initial condition). Then we have the curl, or propagation equa-
tions, which give us the wave equation. These must be implemented, in some form,
by the simulator. This part will be referred to as propagation models. The third
component is embodied in material constitutive relations, which express properties
of light-matter interactions. The latter part will be referred to as medium response
models.
A good implementation in software should treat Maxwell system components as

distinct. In other words, propagation models and medium responses should be sep-
arated as much as possible. In particular, realistic pulse evolution equations must
not build on specific assumptions about the light-matter interactions. Organization
of this theory Section reflects this divide and conquer approach. We will first discuss
two classes of propagation models, namely envelope based and carrier-resolving in a
general frame where all light-matter interactions are described by a nonlinear polar-
ization. Then we deal with nonlinear medium properties that typically play a role in
optical filamentation.

2.1 Derivation of unidirectional propagation models from the wave equation

2.1.1 From Maxwell’s to the wave equation

Maxwell-Faraday and Maxwell-Ampere equations in a nonmagnetic dielectric medium
read:

∇×E = −∂B
∂t

(1)

∇×B = μ0
(
J+
∂D

∂t

)
(2)

where E and B denote the electric and magnetic fields, D denotes the electric dis-
placement field, J is the current density of free charges. All fields (amplitude and
phase) depend on space variables r ≡ (x, y), time t and the propagation variable z,
where we implicitly assumed existence of a well defined propagation direction. The
constant μ0 is the permeability of free space. The vector wave equation is derived from
Eqs. (1,2) and the relation between the electric displacement field, the electric field,
and the polarization which models the response of bound electrons in the medium
to the electric field. The polarization itself usually depends on the electric field via
a model forming a material constitutive relation. Without entering into the details
of constitutive relations at this stage, it is useful to decompose the polarization into
a linear (or first order) part P(1) describing the response of the medium for weak
electric fields, and a nonlinear part P that is a nonlinear function of the electric field
components and becomes relevant for stronger fields. The validity limit of this de-
composition is expressed mathematically by the condition P ∼ P(1) and corresponds
physically to the range of electric fields where most electrons are still bound to the
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nucleus. Laser intensities up to ∼ 1015W/cm2 belong to this regime when ioniza-
tion induced by the optical field leads to a plasma of smaller density than that of
the neutral medium. In this paper, we consider gases or dielectrics that are isotropic
and homogeneous media, for which the components of the first-order polarization are
linear functions of the components of the electric field in the frequency domain. The
first order polarization follows the linear relation:

P̂(1)(r, ω, z) = ε0χ
(1)(ω)Ê(r, ω, z), (3)

where ε0 denotes the permittivity of free space and χ
(1)(ω) is the linear susceptibility

of the medium. The expression for the electric displacement reads:

D̂(r, ω, z) = ε0ε(ω)Ê(r, ω, z) + P̂(r, ω, z), (4)

where ε(ω) ≡ 1+χ(1)(ω) denotes the relative permittivity of the medium [19]. By in-
sertion of Eq. (4) in the Maxwell-Ampere equation, derivation in time of the resulting
equation and by combining it with the curl of Maxwell-Gauss equation, we obtain the
vectorial wave equation governing the evolution of the laser pulse in a transparent
nonlinear medium. In the space-time domain with linear terms gathered on the left
hand side and nonlinear material response on the right hand side, it reads:

∇2E−∇(∇ ·E)− 1
c2
∂2

∂t2

∫ t
−∞
ε(t− t′)E(r, t′, z)dt′ = μ0

(
∂J

∂t
+
∂2P

∂t2

)
(5)

where E, J and P depend on (r, t, z) and we use the same notation for the frequency
dependent material permittivity ε(ω) ≡ n2(ω), which defines the complex refrac-
tion index n(ω) of the material (including effects of linear absorption), and its time
representation ε(t). Note that in the general case, the wave equation (5) involves a
time-convolution of the permittivity with the electric field. In the following, it is useful
to work with the space-frequency representation of Eq. (5):

∇2Ê−∇(∇ · Ê) + ω
2n2(ω)

c2
Ê = μ0

(
−iωĴ− ω2P̂

)
(6)

where Ê, Ĵ and P̂ depend on (r, ω, z). Resolution of Eq. (5) or Eq. (6) requires con-
stitutive equations for the medium P(E), J(E) which define a model for the medium
response (free and bound electrons). Examples are given in section 2.4.
Several successive approximations can be made to derive from Eq. (5) a pulse prop-

agation equation that is suitable for numerical implementation when the processes to
simulate occur over long propagation distances along a dominant direction z. We spec-
ify these approximations and the associated simplifications of Eq. (5) in the following
sections.

2.1.2 Scalar wave equation

This section details approximations to reduce the vectorial wave equation to the scalar
wave equation.
First, the electric field is assumed to remain linearly polarized along a direction

es transverse to the propagation axis. Thus, E = Ees, J = Jes, P = Pes. There
are actually two assumptions in one: First the electric field and the medium response
(current J, nonlinear polarization P) are transverse, i.e., perpendicular to the prop-
agation direction determined by the wave number k. This standard assumption in
propagation of electromagnetic fields means that the term ∇(∇·E) in Eq. (5) can be
neglected. This remains valid as long as beams are not too strongly focused. When the
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beam numerical aperture2 exceeds a few percent, a small longitudinal component Ez
may develop close to the focus and makes this approximation invalid. We will see in
section 2.1.7 how to deal with this situation by adding vectorial corrections. Second,
there is the assumption that the electric field polarization is linear. The latter is not
too restrictive as it essentially means that Eq. (5) can be rewritten in a scalar form
by projection along the polarization direction es:

(∂2z +∇2⊥)E(r, t, z)−
1

c2
∂2

∂t2

∫ t
−∞
ε(t− t′)E(r, t′, z)dt′ = μ0

(
∂2P

∂t2
+
∂J

∂t

)
. (7)

In the case of more than one direction for the electric field polarization, an equation
of the same type as that of Eq. (7) would be obtained for each polarization direction,
with coupling encoded in the material response (see section 2.3.3).
Without loss of generality, we note that the free charge current on the right hand

side of Eq. (7) is formally equivalent to a time derivative of the nonlinear polarization:
in the time domain, J(r, t, z)↔ ∂tP (r, t, z). This has a counterpart in the frequency
domain, Ĵ(r, ω, z)↔ −iωP̂ (r, ω, z) where P̂ and Ĵ are the Fourier transformed non-
linear polarization and current. Therefore, up to the point where we will need to
specify the material nonlinear response and separate explicitly the current from the
nonlinear polarization, we will consider a single term (nonlinear polarization) in prop-
agation models. The current may then be reintroduced in any propagation equation
by changing P̂ into P̂ + iĴ/ω. Equation (7) then becomes:

(∂2z +∇2⊥)E(r, t, z)−
1

c2
∂2t

∫ t
−∞
n2(r, t− t′, z)E(r, t′, z) dt′ = μ0∂2t P (r, t, z) (8)

which is formally easier to handle in the Fourier domain:

(∂2z +∇2⊥)Ê(r, ω, z) + k2(ω)Ê(r, ω, z) = −μ0ω2P̂ (r, ω, z) (9)

where k(ω) ≡ n(ω)ω/c.

2.1.3 Forward Maxwell Equation by factorization of the scalar wave equation

A standard way to derive a propagation equation, starting from Eq. (9), is to use a
factorization method proposed by Feit and Fleck [20], which consists in separating
the forward and backward propagators as:

(∂z + ik(ω)) (∂z − ik(ω)) Ê = −Δ⊥Ê − μ0ω2P̂ (r, ω, z). (10)

In the absence of the right hand side, which represents diffraction in the transverse
plane and the nonlinear polarization term, Eq. (10) would admit a superposition of
two solutions:

Ê(ω, z) = Â+(ω) exp[ik(ω)z] + Â−(ω) exp[−ik(ω)z] (11)

which represent waves propagating in the forward or in the backward direction.
Equation (10) is transformed into a unidirectional propagation equation by assum-
ing that the backward propagating component can be neglected with respect to

2 The numerical aperture is defined as the ratio between beam diameter and focal distance.
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the forward propagating component: |Â−| � |Â+|, leading to the approximation:
∂z + ik(ω) � 2ik(ω), and to the Forward Maxwell Equation (FME) [11]:

∂Ê

∂z
= ik(ω)Ê +

i

2k(ω)
Δ⊥Ê +

i

2n(ω)

ω

c

P̂

ε0
, (12)

where μ0 was replaced by 1/ε0c
2 so as to make apparent the quantity P/ε0 which has

the same unit as the electric field E. As shown in section 2.1.6, the FME (12) belongs
to the class of carrier resolving paraxial propagation equations, which assumes that
the extent of the angular spectrum of the propagated beams remains significantly
smaller than the pulse central wave number in the propagation direction. This is
usually the case except for beams that are tightly focused by means of microscope
objectives. The FME therefore correctly models the propagation of beams with
numerical aperture smaller than ∼ 0.1 or conical beams with cone angle smaller
than a few degrees [21].
We will see that in the spectral domain for both space and time, all unidirectional

propagation equations take a canonical form:

∂Ẽ

∂z
= iKz(ω,k⊥)Ẽ + iQ(ω,k⊥)

P̃

2ε0
(13)

where Kz(ω,k⊥) and Q(ω,k⊥) specifically depend on the approximations made to
derive the equation. For the FME (12), we find:

K(FME)z (ω,k⊥) ≡ k(ω)− k2⊥
2k(ω)

, Q(FME)(ω,k⊥) ≡ ω

cn(ω)
(14)

which are reported in Table 1 to facilitate comparison with other models.

2.1.4 From the laboratory to the pulse local frame

In numerical simulations, it is convenient to follow a propagating pulse in its motion
when (i) it travels along large distances, (ii) the main phenomena under investigation
are determined by the interaction with the medium over durations of the same order
of magnitude as the pulse itself, and (iii) this interaction does not lead to a strong
reflected component in the backward direction so as to keep valid the unidirectional
approximation |Â−| � |Â+| assumed in the previous section. The latter condition
does not hold e.g. in a multiple layer mirror but conditions (i)–(iii) are valid for many
experimental situations where propagation effects prevail over interaction with the
medium. Following the pulse in its motion is then usually performed by a change of
reference frame from the laboratory to the pulse local frame (z, t) → (ζ, τ), where τ
denotes the retarded time in the pulse frame:

ζ = z, τ = t− z/vg (15)

∂z = ∂ζ − (1/vg)∂τ , ∂t = ∂τ . (16)

Note that vg denotes a constant velocity corresponding to the change of reference
frame. It is possible to chose vg arbitrarily but a convenient choice is vg = 1/k

′
0, i.e. vg

coincides with the pulse group velocity obtained from the derivative k′0 ≡ (∂k/∂ω)|ω0
of the dispersion relation in the medium k = k(ω) at the central frequency of the
pulse ω0.
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The spectral counterpart of the first equation of Eqs. (16), i.e. ∂z = ∂ζ+ i(ω/vg),
3

can be directly introduced into Equation (12) to obtain:

∂Ê

∂ζ
= i[k(ω)− ω/vg]Ê + i

2k(ω)
Δ⊥Ê +

i

2n(ω)

ω

c

P̂

ε0
. (17)

Equation (17) is still a paraxial propagation equation.
We will see through various examples that all unidirectional propagation equations

originally expressed in the laboratory frame have a counterpart in the pulse frame
given by a canonical form similar to Eq. (13) with the same Q and modified Kz →
Kz − ω/vg:

∂Ẽ

∂ζ
= i[Kz(ω,k⊥)− ω/vg]Ẽ + iQ(ω,k⊥) P̃

2ε0
. (18)

It can be readily seen that Equation (17) indeed takes the canonical form of Eq. (18)
with Kz and Q defined by Eqs. (14). This means that the different ingredients in
Eq. (18) constitute the basic building blocks for the numerical implementation of a
flexible numerical tool that applies to all other carrier resolving propagation equations
having the canonical form, with a simple change of (i) the frequency and wave number
dependence of operators Kz and Q, and (ii) constitutive relations, i.e. P (E).

2.1.5 Slowly Evolving Wave Approximation

The change of reference frame made in section 2.1.4 may be applied directly to the
scalar wave equation by introducing ∂z = ∂ζ + i(ω/vg) into Eq. (9). This yields:

∂2Ê

∂ζ2
+ 2i

ω

vg

∂Ê

∂ζ
= −Δ⊥Ê − [k2(ω)− ω

2

v2g
]Ê − ω

2

c2
P̂

ε0
. (19)

From the still exact Eq. (19), the slowly evolving wave approximation (SEWA) con-
sists in neglecting the second order derivative in ζ with respect to the second term:
|∂2ζ Ê| � 2(ω/vg)|∂ζÊ|, or equivalently:∣∣∣∂ζÊ

∣∣∣� ω

vg
|Ê|. (20)

Physically, this approximation means that the field amplitude and phase are evolving
sufficiently slowly along the propagation direction ζ, i.e., the typical length scale to
observe a variation of Ê(r, ω) is much larger than vg/ω. Note that this approximation
does not impose that the electric field be free of a fast oscillating carrier. The SEWA
remains valid for carrier-resolving models with electric fields E(r, τ) ∝ exp(−iωτ).
Originally proposed in the context of nonlinear envelope equations [17], the SEWA
does not only consist in neglecting ∂2ζ with respect to (ω/vg)∂ζ in Eq. (19), called here

the Minimal approximation (MA), but also in another correction presented below. We
start with the MA that corresponds to Eq. (20). Under the MA, Eq. (19) becomes a
unidirectional propagation equation in the form of Eq. (13), called the Forward Wave
Equation (FWE), which reads:

∂Ê

∂ζ
=

i

2(ω/vg)
Δ⊥Ê + i

[k2(ω)− (ω/vg)2]
2(ω/vg)

Ê +
ivg

2c

ω

c

P̂

ε0
. (21)

3 It is found by introducing the spectral counterpart of the second equation ∂τ = −iω into
the first equation of Eqs. (16).
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It is readily seen4 that Eq. (21) takes the same form as Eq. (18) with

K(FWE)z (ω,k⊥) ≡ k(ω) + vg
2ω

(
k(ω)− ω

vg

)2
− vgk

2
⊥
2ω
, Q(FWE)(ω,k⊥) ≡ vgω

c2
.

(22)
The FWE (21) is a carrier resolving paraxial propagation equation, that allowed
for simulations of filamentation and few-cyle pulse formation in argon, coupled
with a model for high harmonic generation [12,13,22–24]. In order to specify
the physical content of the MA, we consider a pulse with carrier frequency ω0:
E(z, t) ∝ exp(−iω0t + ik0z). In the pulse frame defined by Eq. (15), the field be-
comes E(ζ, τ) ∝ exp[−iω0τ + i(k0 − ω0/vg)ζ]. Thus, the field is oscillating at the
same carrier frequency but the wave number seen in the pulse frame is k0 − ω0/vg,
justifying the assumption that the field evolves along ζ sufficiently slowly with respect
to the central wavelength, but does not necessarily vary slowly in time. The MA as
well as other approximations of the SEWA class (see Table 1) only concern the evo-
lution variable ζ, but do not impose any restriction on the variation in time τ of the
pulse. Taking the ζ derivative of the field yields ∂ζE ∝ (k0 − ω0/vg)E. Inserting the
latter expression in Eq. (20) leads to the condition:

∣∣∣∣vgk0ω0 − 1
∣∣∣∣� 1 ↔

∣∣∣vgn0
c
− 1
∣∣∣� 1. (23)

In other words, taking vg as the pulse group velocity, the MA and the SEWA are
justified if the relative difference between phase and group velocities is sufficiently
small. More generally, the MA is valid for all frequencies of the pulse which have a
phase velocity close enough to the velocity of the moving frame: |vgn(ω)/c− 1| � 1.
Comparison of Equation (21) with Eq. (17) shows that differences appear in

the linear and nonlinear dispersion operators, i.e., the frequency-dependence in Kz
and Q:

K(FME)z −K(FWE)z = − ω
2vg

(
1− n(ω)vg

c

)2
−
(
1− n(ω)vg

c

)
k2⊥
2k(ω)

(24)

Q(FME) −Q(FWE) = ω
2

c2

(
1− n(ω)vg

c

)
. (25)

All terms on the right hand side of Eqs. (24) and (25) are first or second order terms
with respect to the quantity (1 − n(ω)vg/c). In addition to Eq. (20), the SEWA
consists in also neglecting the right hand sides of Eqs. (24) and (25), thus rendering
the FWE and the FME identical. A graphical representation of the MA and SEWA
will be shown in Fig. 1.

2.1.6 Non paraxiality

The FME (17) and FWE (21) are paraxial propagation equations. We will see in this
section how to account for nonparaxiality in unidirectional propagation equations. In
Fourier space, Eq. (12) is expressed in the canonical form Eq. (13) with Kz(ω,k⊥) =
K
(FME)
z (ω,k⊥) given by Eq. (14). This expression is exactly the first order, small
k⊥/k(ω)-expansion 5 of the dispersion relation obtained from the left hand side of

4 K
(FWE)
z (ω,k⊥) ≡ (vg/2ω)[k2(ω)− (ω/vg)2] + ω/vg.

5 |k⊥| � |k(ω)| means that the validity limit of the expansion is the paraxial propagation
regime.
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Fig. 1. Comparison of dispersion relations corresponding to the (a) UPPE, (b) FME and
(c) FWE models. For a given medium characterized by its dispersion relation k(ω), the con-

tinuous curves show the dispersion relation kz(k⊥, ω) for each model as given by K
(UPPE)
z ,

K
(FME)
z , and K

(FWE)
z .

the wave equation (9):

Kz(ω, k⊥) =
√
k2(ω)− k2⊥. (26)

In order to account for nonparaxial effects while keeping the advantage of the uni-
directional propagation, the forward and backward propagators in Eq. (9) must be
rewritten in the Fourier space as:

[∂z + iKz(ω, k⊥)] [∂z − iKz(ω, k⊥)] Ẽ = −μ0ω2P̃ . (27)

As in Eq. (10), we now consider only the forward propagating component, i.e., we
make the approximation ∂z + iKz ∼ 2iKz. This leads to the nonparaxial version of
the FME, i.e. the Unidirectional Pulse Propagation Equation (UPPE):

∂Ẽ

∂z
= iKz(ω, k⊥)Ẽ +

i

2Kz(ω, k⊥)
ω2

c2
P̃

ε0
(28)

which follows the canonical form with K
(UPPE)
z given by Eq. (26) and Q(UPPE) ≡

ω2/K
(UPPE)
z c2. The UPPE (28) was obtained here by the factorization method. Sec-

tions 2.3 and 2.3.3 will present a rigorous derivation from which the physical meaning
of the approximation made in the factorization will appear.
Comparing the UPPE (28) with the FME (12), we note two important differences:

(i) The FME involves differential operators in transverse spatial variables that de-
scribe diffraction in the transverse plane and space-time focusing due to the frequency
dependence in the diffraction coefficient. Its nonparaxial version Eq. (28) is naturally
expressed in the spectral domain due to the factorization method. Therefore, it cannot
be translated easily in terms of differential operators in spatial variables, apart from
a formal writing which becomes rather intractable when numerical implementation
with finite difference is concerned. The effects of diffraction and space-time focus-
ing are still described via the wave number (k⊥) and frequency (ω) dependence in
Kz(ω, k⊥) [Eq. (26)], respectively, but nonparaxiality is now accounted for. (ii) Since
K
(UPPE)
z (ω, k⊥) depends on k⊥ and Q(UPPE) is obtained as a function of K

(UPPE)
z ,

wave numbers appear as new Fourier variables in the operator Q acting on nonlinear
polarization in the UPPE (28), whereas Eqs. (14) show that the quantity Q(FME)

is independant of k⊥. This means that Eq. (28) is potentially much easier to imple-
ment numerically than equations in the form of the FME. Evaluation of the r.h.s. of
Eq. (28) simply requires multiplications in the spectral domain Kz(ω, k⊥)× Ẽ(ω, k⊥)
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to describe linear propagation effects instead of dealing with the transverse Laplacian
in the spatial domain as in Eq. (17) and paraxial equations in general. However, the

nonlinear polarization P̃ (ω, k⊥) is often most easily evaluated in the space-time do-
main P (τ, r). Thus, the gain due to the simplicity in linear propagation in Eq. (28)
is partly compensated by the need to perform three-dimensional Fourier transforms
back and forth each time the nonlinear polarization P̃ (ω, k⊥) will be evaluated from
P (τ, r).
Figure 1 shows a comparison of different approximations made to derive the

UPPE, the FME and the FWE models. The axial wave number for the FME de-
parts from that of the UPPE for large transverse wave numbers, which corresponds
to the paraxiality assumption made in the FME. The axial wave number for the
FWE exhibits a small departure from that of the FME even for small transverse
wave numbers, which corresponds to a systematic distortion in the dispersion rela-
tion introduced when only the MA is assumed. The SEWA corrects this distortion.
However, this deviation is really small for common focusing geometries and pulse du-
rations. More limiting from the practical point of view is the uncertainty in medium
parameters, and availability of dispersion relations accurate over wide frequency
ranges [25].

2.1.7 Vectorial effects

Up to now, we have neglected∇(∇·E) in the wave equation. The goal of this section is
to reintroduce this term so as to obtain a unidirectional propagation equation valid for
describing vectorial effects, i.e. in the case of tightly focused beams. Maxwell-Gauss
equation reads:

∇ ·D = ρf (29)

where ρf denote the free space charge. By introducing the relationD = ε0E+P
(1)+P

into Eq. (29), we obtain

ε0∇ ·E = ρf −∇ · (P(1) +P) (30)

which can be expressed in the frequency domain by using Eq. (3):

∇ · Ê = 1

ε0ε(ω)
(ρ̂f −∇ · P̂). (31)

As long as the motion of charges does not occur over long spatial scales, the total
free charge density can be considered zero even if the propagating laser pulse is so
intense that it ionizes the medium. Ionization indeed leads to a plasma of negative
electrons and positive ions; electroneutrality is satisfied at the macroscopic scale.
Under these assumptions, reintroducing ∇ · Ê in the wave equation and considering
the case of a linear or circular laser polarization along the transverse unit vector(s)
e⊥, the Vectorial Forward Maxwell Equation (VFME), i.e., a paraxial propagation
equation of the same type as the FME but including vectorial effects, is obtained as:

∂Ê

∂z
=

i

2k(ω)
Δ⊥Ê+ ik(ω)Ê +

i

2k(ω)ε(ω)
e⊥ · ∇

(
∇ · P̂
ε0

)
+

i

2n(ω)

ω

c

P̂

ε0
(32)

and its non paraxial unidirectional version as

∂Ẽ

∂z
= iKz(ω, k⊥)Ẽ− i

2ε(ω)Kz(ω, k⊥)
k⊥

(
k⊥ · P̃

ε0

)
+

i

2Kz(ω, k⊥)
ω2

c2
P̃

ε0
(33)
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where the second term on the right hand side accounts for vectorial effects. Note
that Eqs. (32) and (33) involve the main component for the electric field which is
perpendicular to the propagation direction. Vectorial effects, however, induce a small
component in the longitudinal direction [26].

2.2 Derivation of envelope propagation equations

Envelope models are useful when there exist separate scales for the evolution of the
pulse, a fast scale typically of the order of the wavelength, and a slow scale much
larger than the wavelength. The pulse propagation can then be advantageously de-
scribed by considering the electric field as a superposition of the pulse envelope
E with a carrier wave of frequency ω0: E(r, t, z) = E(r, t, z) exp(ik0z − iω0t). In
the local pulse frame: E(r, τ, ζ) = E(r, τ, ζ) exp[i(k0 − ω0/vg)ζ − iω0τ ]. A simi-
lar decomposition holds for the nonlinear polarization and the free charge current:
{P, J}(r, τ, ζ) = {P,J }(r, ζ, τ) exp[i(k0−ω0/vg)ζ− iω0τ ]. Propagation equations for
the envelope can be obtained by introducing this decomposition in any carrier re-
solving propagation equation or in the wave equation itself. We will examine both
techniques. Formally, one simply needs to apply transformations to the evolution
operator and time derivatives which read:
In the laboratory frame:

∂zE = exp(ik0z − iω0t)[∂z + ik0]E (34)

∂tE = exp(ik0z − iω0t)[∂t − iω0]E . (35)

In the pulse frame:

∂ζE = exp(i(k0 − ω0/vg)ζ − iω0τ)[∂ζ + i(k0 − ω0/vg)]E , (36)

∂τE = exp(i(k0 − ω0/vg)ζ − iω0τ)[∂τ − iω0]E . (37)

We will see in several examples that these transformations lead to envelope propaga-
tion equations that also take the canonical form:

∂Ẽ
∂ζ
= iK(Ω,k⊥)Ẽ + iQ(Ω,k⊥) P̃

2ε0
(38)

where Ω ≡ ω − ω0.

2.2.1 Nonlinear Envelope Equations from Carrier-Resolving Propagation equations

In this section, we derive nonlinear envelope equations obtained when the carrier and
envelope decomposition is introduced in a carrier resolving propagation equation.
Introducing Equations (36) and ∂z = ∂ζ + ω/vg into the canonical carrier resolving
propagation equation (13) and removing the carrier wave exp[i(k0 − ω0/vg)ζ − iω0τ ]
transforms it into Eq. (38) with

K(Ω,k⊥) ≡ Kz(ω = ω0 +Ω,k⊥)− κ(ω = ω0 +Ω) (39)

Q(Ω,k⊥) ≡ Q(ω = ω0 +Ω,k⊥) (40)

where κ(ω) ≡ k0 + (ω − ω0)/vg.
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Using the Forward Maxwell Equation (17) as a starting point leads to the nonlinear
envelope equation written in the spectral domain:

∂Ê
∂ζ
=

i

2k(ω)
Δ⊥Ê + i[k(ω)− κ(ω)]Ê + i

2k(ω)

ω2

c2
P̂
ε0
. (41)

One notes that Eq. (41), as the original FME (17), is a paraxial equation. The main
difference is that the fields in Eq. (17) have to be treated as real quantities with
high temporal resolution of the order of the optical period, whereas the envelopes in
Eq. (41) are complex quantities that require lower temporal resolution of the order
of the pulse duration.

2.2.2 Nonlinear Envelope Equation from the wave equation

In this section, we derive Nonlinear Envelope Equations (NEE) directly from the wave
equation. Since we aim at finding a nonlinear envelope equation in the pulse frame,
we start from the wave equation (19) in the pulse frame, we introduce the carrier-
envelope decomposition (36), remove the carrier and recombine the ω/vg terms with
k0 − ω0/vg to form κ(ω) = k0 + (ω − ω0)/vg. This yields:

∂2Ê
∂ζ2
+ 2iκ(ω)

∂Ê
∂ζ
= −Δ⊥Ê − [k2(ω)− κ2(ω)]Ê − ω

2

c2
P̂
ε0
. (42)

Equation (42) is exact and did not require any approximation except when vector-
ial effects in the original wave equation were neglected. We discuss below different
Nonlinear Envelope Equations obtained by performing various approximations.

Minimal Approximation (MA) From Equation (42), the only required approxi-
mation to obtain a propagation equation in the canonical form for nonlinear envelope
equations is that of neglecting ∂2ζ . This yields a NEE that has been extensively used

in simulations of ultrashort laser pulse filamentation [3]:

∂Ê
∂ζ
=

i

2κ(ω)
Δ⊥Ê + i [k

2(ω)− κ2(ω)]
2κ(ω)

Ê + i

2κ(ω)

ω2

c2
P̂
ε0
. (43)

Equation (43) contains all terms found in various types of NEEs found in the lit-
erature, derived under various approximations. To discuss these approximations, we
rewrite the second term on the right hand side of Eq. (42) as:

k2(ω)− κ2(ω) = 2κ(ω)[k(ω)− κ(ω)] + [k(ω)− κ(ω)]2. (44)

The rationale behind this rewriting is understood from a small Ω ≡ ω − ω0 Taylor
expansion of the difference k(ω) − κ(ω) around ω0, which introduces the high-order
dispersive terms

k(ω0 +Ω)− κ(ω0 +Ω) =
+∞∑
l=2

k
(l)
0

l!
Ωl, (45)

where k
(l)
0 ≡ ∂lωk|ω0 . Note that the lowest order term in the second term on the rhs

of Eq. (44) is O(Ω4), and thus appears as a small correction with respect to the first
term on the rhs of Eq. (44) that is O(Ω2). Equation (43) is thus rewritten as

∂Ê
∂ζ
=

i

2κ(ω)
Δ⊥Ê + i(k(ω)− κ(ω))Ê + i [k(ω)− κ(ω)]

2

2κ(ω)
Ê + i

2κ(ω)

ω2

c2
P̂
ε0

(46)
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which is convenient to review the various type of NEEs and compare them to the
NEE-MA, since all of them neglect the O(Ω4) third term on the rhs of Eq. (46). We
will follow the terminology introduced by Kinsler et al. [15] that classifies various
approximations in the literature on nonlinear envelope equations.

Generalized Few-cycle Envelope Approximation (GFEA). This approxima-
tion proposed by Kinsler et al [15] consists in first rewriting the envelope equation (42)
by using Eq. (44) as for the NEE-MA:

2iκ(ω)
∂Ê
∂ζ
= −Δ⊥Ê − 2κ(ω)[k(ω)−κ(ω)]Ê + {[k(ω)−κ(ω)]2−∂2ζ}Ê −

ω2

c2
P̂
ε0
. (47)

Equation (47) is still exact. Then the third term on the r.h.s. of Equation (47) is
neglected. This yields:

∂Ê
∂ζ
= i[k(ω)− κ(ω)]Ê + i

2κ(ω)
Δ⊥Ê + i

2κ(ω)

ω2

c2
P̂
ε0
, (48)

which has a counterpart in the space-time domain:

∂E
∂ζ
= iD(i∂τ )E+ i

2k0

(
1 + i

k′0
k0
∂τ

)−1
Δ⊥E+ i

2

ω0

n0c

(
1 + i

k′0
k0
∂τ

)−1(
1 +

i

ω0
∂τ

)2 P
ε0
,

(49)

where D(i∂τ ) ≡
∑+∞
l=2

k
(l)
0

l! (i∂τ )
l.

Thus there are two approximations in the GFEA: (i) An implicit small Ω-Taylor
expansion of the dispersion operator is assumed and O(Ω4) terms are neglected. The
neglected terms precisely make the remaining dispersive terms of the NEE-GFEA
(48) identical to those of the Forward Envelope Equation (41). (ii) The envelope is
evolving slowly with respect to the propagation variable ζ: |∂ζE| � |k0E|. In the orig-
inal terminology introduced for the linear version of the NEE-GFEA (48), i.e. in the
absence of a nonlinear polarization, the latter approximation was called the Slowly

Evolving Envelope Approximation (SEEA) [16]. The operator (1 + i(k′0/k0)∂τ )
−1
in

front of the diffraction term describe space-time focusing, i.e, a frequency dependence
of diffraction carried by the effective propagation constant κ(ω) = k0 + k

′
0(ω − ω0).

In a medium with normal dispersion, red frequencies propagate faster than blue fre-
quencies and a pulse with flat phase front would normally broaden. For a beam, due
to space-time focusing, red frequencies are diffracted at larger angles than blue fre-
quencies making diffraction equivalent to an anomalous dispersive phenomenon that
can compensate normal dispersion [16].

Slowly Evolving Wave Approximation (SEWA). The SEWA was explained
in the context of carrier-resolving equations. In the context of Nonlinear Envelope
Equations, the SEWA was introduced by Brabec and Krausz [17] and consists in the
same approximation as the GFEA with an additional approximation on the propa-
gation constant κ(ω) ∼ n0ω/c appearing in the second and third terms6 on the r.h.s.
of Eq. (48). This leads to the spectral version of the Nonlinear Envelope Equation
under the SEWA (NEE-SEWA):

∂Ê
∂ζ
=
ic

2n0ω
Δ⊥Ê + i[k(ω)− κ(ω)]Ê + i

2n0

ω

c

P̂
ε0
, (50)

6 It does not effectively appear in the first term. This can be verified by the Taylor
expansion (45).
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which was initially derived in the space-time domain [17]. From the NEE-GFEA, the
approximation made to derive the NEE-SEWA is equivalently expressed in the tem-
poral domain as (1 + i(k′0/k0)∂τ ) ∼

(
1 + i/ω0

−1∂τ
)
, thus the space-time counterpart

of the NEE-SEWA reads:

∂E
∂ζ
= iD(i∂τ )E + i

2k0

(
1 +

i

ω0
∂τ

)−1
Δ⊥E + i

2

ω0

n0c

(
1 +

i

ω0
∂τ

) P
ε0
. (51)

The SEWA introduces a slight distortion in the space-time focusing operator
(1 + (i/ω0)∂τ )

−1
, obtained from its original version (1 + i(k′0/k0)∂τ ) by the change

k′0/k0 → ω0−1 which amounts to neglecting the difference between phase and group
velocities c/n0 = ω0/k0 ∼ 1/k′0, as seen from the frequency dependence of effective
propagation constant for the NEE-GFEA and NEE-SEWA k0+k

′
0(ω−ω0) ∼ k0ω/ω0.

Slowly Varying Envelope Approximation (SVEA). At the lowest order, we
may retain only the second order dispersive term in Equation (45), or the second and
third orders:

k(ω0 +Ω)− κ(ω0 +Ω) = k
(2)
0

2
Ω2 +O(Ω3), (52)

and by keeping the lowest order in κ(ω0 + Ω) ∼ k0 and ω ∼ ω0, we obtain from
Eq. (43) an equation of the Nonlinear Schrödinger (NLS) type that is valid for pulses
with a narrow spectrum:

∂Ê
∂ζ
=
i

2k0
Δ⊥Ê + ik

(2)
0

2
Ω2Ê + i

2n0

ω0

c

P̂
ε0
. (53)

Strictly speaking, the Nonlinear Schrödinger Equation involves a cubic dependence
of the nonlinear polarization P ∝ |E|2E as obtained with a Kerr nonlinearity (see
section on the medium response) and is usually derived by introducing the carrier
and envelope decomposition directly into the wave equation written in the space-
time domain.

∂E
∂ζ
=
i

2k0
Δ⊥E − ik

(2)
0

2

∂2E
∂τ2
+
i

2n0

ω0

c

P
ε0
. (54)

As written in Eq. (53), the NLS takes the canonical form of envelope equations. All
nonlinear envelope equations derived in the previous sections can be considered as
extended NLS equations in the sense that they can be obtained from the NLS equa-
tion by introducing the proper frequency dependence in the propagation constant,
dispersion operator, and nonlinear dispersion.

2.3 Derivation of carrier-resolving pulse propagation models

The following section is devoted to rigorous derivations of Unidirectional Pulse Prop-
agation Equations (UPPE). The idea here is to start from Maxwell’s equations and
avoid any approximation in the propagation part of the problem. As the reader will
see, approximations become only necessary at the point when nonlinear interactions
are considered, and then they only have to do with splitting an exact system of pulse
propagation equations into two decoupled unidirectional equations.
The UPPE approach has been previously derived in two flavors, depending on

direction of the numerically simulated evolution [5,10]. The latter can proceed either
along the time coordinate, or it can follow a wave packet along one of the spatial
coordinates (usually chosen as z) in the direction of the laser beam.
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In the first case, termed time-propagated evolution, one has an initial condition
(i.e. a given description of the electric and magnetic fields) specified in all space for
a given initial time. The evolution is calculated along the time axis, and it naturally
reflects the structure of Maxwell’s equations.
In the second case, termed z-propagated evolution, the initial condition is given as

a function of the local pulse time and of two transverse (with respect to the propaga-
tion direction) coordinates. Numerical evolution then proceeds along the propagation
axis. From the mathematical point of view, this case is an initial value problem very
much the same way the t-propagated case is. However, from the physical point of
view this is a rather subtle issue because the true initial condition requires knowledge
of the total field in the past and in the future. This includes the light which may be
nonlinearly reflected from the focal region of an experiment. Only if we can assume
that this is sufficiently weak, we can practically solve the corresponding initial value
problem.
The time-propagated approach is common for solvers based on direct integration

of Maxwell’s equations. Accordingly, the time-propagated versions of UPPE are more
suitable for tight-focusing scenarios when the non-paraxial effects start to play a role.
On the other hand, the z-propagated equations are easier to use in situations

which allow to neglect longitudinal field components as contributing sources of non-
linear material responses. That is the main reason the z-propagated approach is more
common, especially in nonlinear optics. In this paper, we will restrict our attention
to the z-propagated case. However, numerical techniques described here are directly
applicable to any t-propagated simulator implementation.
In relation to the previous section, the following material will reveal an interest-

ing fact. We have seen that some of the equations derived from the wave equations
seem to require certain approximations. Now it will be shown that in spite of this,
the resulting equations are in a certain sense exact, and that assumptions needed for
the Laplacian factorization are in fact not necessary but only sufficient conditions.
This apparent contradiction originates in the fact that a solution to a unidirectional
propagation equation must not satisfy the wave equation. Only two coupled unidirec-
tional solutions (propagating in opposite directions) must, and indeed obey the wave
equation.

2.3.1 A simplified case first: One-dimensional Maxwell’s equations

The most important ingredient in unidirectional evolution equations is the separation
of those wave-form portions which propagate in opposite direction. To emphasize
this, and also to make the subsequent full derivation easier to digest, we start with
a simplified case of one-dimensional Maxwell’s equations. This reduced case is free of
notational complications while it illustrates all important steps of the fully vectorial
treatment. In particular, it shows very clearly that a pair of unidirectional equations
is exact.
The one dimensional Maxwell equations reduced to linearly polarized electric field

can be written as (for convenience and notational simplicity, appropriate scaled units
are used in this subsection):

− ∂zH = ∂tE + ∂tP
−∂zE = ∂tH (55)

where z is the optical axis and E and H are implicitly understood to be orthogonal to
each other and to z. P represents nonlinear polarization that itself is a functional of
the electric field history at a given spatial point. Section 2.4 provides several examples
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the reader can keep in mind, but a concrete form of this nonlinearity is completely
unimportant for the purpose of the following derivation.
This simplified Maxwell system has harmonic waves as solutions in the linear

regime when P = 0:

Eλ(ω, z, t) = E0 exp [−iωt+ iλk(ω)z] (56)

Hλ(ω, z, t) = λH0 exp [−iωt+ iλk(ω)z] ω > 0 λ = ±1 .
The direction indicator λ selects forward and backward (or left and right) propagating
waves. We can use these plane-waves as a basis in which to express a full, nonlinear
solution as

E =
∑
μ=±1

∫
dΩAμ(Ω, z)Eμ(Ω, z, t) H =

∑
μ=±1

∫
dΩAμ(Ω, z)Hμ(Ω, z, t).

Here, Aμ(Ω, z) are spectral amplitudes for which we have to find an evolution equa-
tion. Taking (55), and multiplying with the above linear basis solutions we get

Eλ∂zH = −Eλ∂tE − Eλ∂tP
(57)

Hλ∂zE = −Hλ∂tH.
In these equations and in following formulas, we assume that the arguments of Eλ and
Hλ are Ω, z, t. We now add these two equations, and collect terms that constitute full
derivatives while using the fact that Hλ, Eλ solve the linear Maxwell system:

∂z[EλH +HλE] = −∂t[EλH +HλE]− Eλ∂tP. (58)

The next step is to integrate over the whole domain perpendicular to the direction
of propagation. In this simplified case it means the t domain alone. After integration
over t, the middle term gives rise to boundary terms at past and future temporal
infinities. To get rid of these, we will restrict our solution space to those functions
which satisfy

lim
t→±∞[EλH(z, t) +HλE(z, t)] = 0 . (59)

What this condition requires is that for every fixed z along the laser beam axis, the
field will vanish if we wait for a sufficiently long time. In other words, light energy
will dissipate into positive and negative z-infinities. This is certainly a very benign
assumption in the context of pulse propagation, because this is exactly what happens
to localized pulsed wave packets - they eventually disappear from our sight.
The above condition eliminates the middle term in (58), and the rest can be

transformed as follows. First, in the left-hand side we use the fact that the basis
solutions are orthogonal, and after time integration they eliminate the sum over Ω
and the modal index μ:

∫
dt∂z[Eλ(ω, z, t)H +Hλ(ω, z, t)E]

=

∫
dt∂zEλ(ω, z, t)

∑
μ=±1

∫
dΩAμ(Ω, z)Hμ(Ω, z, t)

+

∫
dt∂zHλ(ω, z, t)

∑
μ=±1

∫
dΩAμ(Ω, z)Eμ(Ω, z, t)

= 2λE0H0∂zAλ(ω, z). (60)
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On the right-hand side of Eq. (58), the polarization term yields essentially a Fourier
transform

−
∫
dtEλ(ω, z, t)∂tP = iω exp [−iλk(ω)z]P̂ (ω, z).

Collecting both sides, we arrive at an evolution equation for spectral amplitudes:

∂zAλ(ω, z) =
iω

2λE0H0 exp [−iλk(ω)z]P̂ (ω, z). (61)

To obtain a corresponding equation for the electric field, we recall that

Êλ(ω, z) = Aλ(ω, z) exp [iλk(ω)z]

and expressing its z-derivatives using the evolution equation (61) for the spectral
amplitudes, we have:

∂zÊλ(ω, z) = iλk(ω)Êλ(ω, z) + iλ
ω

2E0H0 P̂ (ω, z).

This is a pair of equations for forward and backward (λ = ±1) propagating fields.
The two are coupled through the polarization which depends on their sum. Explicitly,

P (z, t) = P [E+(z, t) + E−(z, t)].

where the concrete functional form of this dependence is not important for the present
purpose, but as an example one can consider the instantaneous Kerr nonlinearity for
which the polarization is simply proportional to the cube of the electric field (for more
examples, see section 2.4):

P (z, t) = P [E+(z, t) + E−(z, t)] ∝ [E+(z, t) + E−(z, t)]3.
The above derivation illustrates the scheme we will use in the next Section to derive
the general, fully vectorial Unidirectional Pulse Propagation Equation. The important
point to note here is that within the admissible subspace specified by condition (59),
the pair of unidirectional equations is exact.

2.3.2 Maxwell’s equations as a boundary value problem for pulsed beam propagation

As a first step in derivation of various versions of UPPE, we derive an exact coupled-
modes system of equations. Electromagnetic fields of a light pulse propagating along
the z-axis can be expanded into modal contributions that reflect the geometry of the
waveguide (we can consider a homogeneous medium as a special case of the latter).

E(x, y, z, t) =
∑
m,ω

Am(ω, z)Em(ω, x, y)eiβm(ω)z−iωt

H(x, y, z, t) =
∑
m,ω

Am(ω, z)Hm(ω, x, y)eiβm(ω)z−iωt. (62)

Here,m labels all transverse modes, and an initial condition Am(ω, z = 0) is supposed
to be given or calculated from the known field values at z = 0. Note that the above
expansion is valid for the transverse components only, and that the modal indexm is a
short hand for all quantities which are required to specify a unique propagation mode.
For example, in a homogeneous bulk medium, the eigen modes are the well known
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plane waves, and the index m represents polarization, two transverse wave numbers,
and a binary value selecting the forward or backward direction of propagation.
To save space and reduce clutter, the following short-hand notation will be used

below

Em ≡ Em(ω, x, y)eiβm(ω)z−iωt
(63)

Hm ≡ Hm(ω, x, y)eiβm(ω)z−iωt.
We consider a non-magnetic medium (μ = μ0) with a linear permittivity ε(ω, x, y)
that does not depend on the propagation coordinate z which coincides with what we
consider forward and backward propagation direction. Note that the permittivity or,
equivalently, the index of refraction may depend on the transverse coordinates x, y.
That would be the case for example in a micro-structured waveguide, or in a hollow-
core fiber or capillary; at this first stage, we want to treat bulk media and fiber-like
geometries together. Later we can branch and derive separate, specialized equations
for waveguides and for bulk media.
The starting point of our derivations is the Maxwell equations:

J+ ∂tP+ ε0∂tε ∗E = ∇×H
(64)

−μ0∂tH = ∇×E
where the star represents a convolution so that the term is a short hand for

ε0∂tε ∗E = ε0∂t
∫ ∞
0

dτε(τ)E(t− τ).

Here ε(τ) is the temporal representation of frequency-dependent permittivity ε(ω).
The same notation will be used for both quantities, and their arguments will serve to
distinguish them where needed.
As a first step, we scalar-multiply Maxwell’s equations by complex conjugate

modal fields

E∗m.(J+ ∂tP) + ε0E∗m.∂tε ∗E = E∗m.∇×H
(65)

−μ0H∗m.∂tH = H∗m.∇×E.
Using the formula b.(∇× a) = ∇.(a×b) + a.(∇×b), we transform both right-hand
sides to obtain

E∗m.(J+ ∂tP) + ε0E∗m.∂tε ∗E = ∇.[H× E∗m] + H.[∇× E∗m]
(66)

−μ0H∗m.∂tH = ∇.[E×H∗m] +E.[∇×H∗m].
Now we can take advantage of the fact the modal fields themselves satisfy Maxwell’s
equations

∇× E∗m = −μ0∂tH∗m
(67)

∇×H∗m = ε0∂tε ∗ E∗m,
and therefore the previous equations can be written as

E∗m.(J+ ∂tP) + ε0E∗m.∂tε ∗E = ∇.[H× E∗m]− μ0H.∂tH∗m
(68)

−μ0H∗m.∂tH = ∇.[E×H∗m] + ε0E.∂tε ∗ E∗m.
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Next, we subtract the two equations and collect terms that constitute full time deriv-
atives

E∗m.(J+ ∂tP) + ∂t[ε0E∗m.ε ∗E] = ∇.[H× E∗m]− ∂t[μ0H∗m.H]−∇.[E×H∗m]. (69)

Now we integrate over the whole xyt domain. Note that all terms except the first and
∂z, which is implicit in the ∇. operator, are derivatives that give rise to surface terms
after integration over x, y, t. These surface terms are supposed to vanish far from the
axis of the laser beam, as well as in past and future temporal infinities. Intuitively,
admissible solutions include spatially and temporally localized pulse-like solutions.
As a consequence, the only surviving derivatives will be ∂z:∫
E∗m.(J+ ∂tP) dxdy dt = ∂z

∫
z.[H× E∗m] dxdy dt− ∂z

∫
z.[E×H∗m] dxdy dt.

(70)
Here and in what follows, t integrations are understood as:

∫
dt ≡ 1

T

∫ +T/2
−T/2 dt where

T is a large normalization volume, and integrals over x, y are understood in a similar
way. This will give us a convenient way to obtain the correct normalization and trans-
late it into implementation which will be in terms of numerical Fourier transforms.
Because only transverse field components enter the above equation, we can use

our modal expansion here (recall that those are only valid for transverse vector com-
ponents):∫

E∗m.(J+ ∂tP) dxdy dt

= ∂z

∫
z.[
∑
n,Ω

An(Ω, z)Hn(Ω)× E∗m(ω)]eiβn(Ω)z−iΩte−iβm(ω)z+iωt dxdy dt

−∂z
∫
z.[
∑
n,Ω

An(Ω, z)En(Ω)×H∗m(ω)]eiβn(Ω)z−iΩte−iβm(ω)z+iωt dxdy dt. (71)

Integration over time gives a Kronecker delta between angular frequencies, δΩω, which
in turn reduces the sum over Ω:∫

E∗m.(J+ ∂tP) dxdydt

= ∂z

∫
z.[
∑
n

An(ω, z)Hn(ω, x, y)× E∗m(ω, x, y)]eiβn(ω)ze−iβm(ω)z dxdy

−∂z
∫
z.[
∑
n

An(ω, z)En(ω, x, y)×H∗m(ω, x, y)]eiβn(ω)ze−iβm(ω)z dxdy. (72)

Collecting like terms results in an equation∫
E∗m.(J+ ∂tP)dxdy dt = ∂z

∑
n

An(ω, z)e
iβn(ω)ze−iβm(ω)z

×
∫
z.[Hn(ω, x, y)× E∗m(ω, x, y)− En(ω, x, y)×H∗m(ω, x, y)] dxdy. (73)

At this point we are going to use a general property of electromagnetic modal fields
which constitute an orthogonal basis: all radiative waveforms can be expressed as
their linear combinations. To calculate such expansions, one can utilize the following
orthogonality relation∫

z.[Em ×H∗n −Hm × E∗n] dxdy = 2δm,nNm(ω). (74)
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Here Nm(ω) is a normalization constant, whose explicit functional form has to be
derived for each concrete set of modes.
Orthogonality of modes is used to reduce the sum over n in (73)∫
E∗m.(J+ ∂tP) dxdy dt = −∂z

∑
n

An(ω, z)e
iβn(ω)ze−iβm(ω)z2δm,nNm(ω), (75)

and we finally obtain an evolution equation for our expansion coefficients:

∂zAm(ω, z) = − 1

2Nm(ω) XY T

∫ +T/2
−T/2

dt

∫ +Y/2
−Y/2

dy

∫ +X/2
−X/2

dx

×e−iβm(ω)z+iωtE∗m(ω, r).[J(r, t) + ∂tP(r, t)]. (76)

This is the common representation for various z-propagated unidirectional equations,
and in fact the form in which numerical solutions should be implemented. In the
following sections, we will specialize this to the case of bulk media.

2.3.3 z-propagated UPPE for homogeneous media: General case

In this section, Eq. (76) is specialized for the case of a homogeneous medium. This
is done by inserting explicit expressions for a given family of modal fields. In a bulk
medium, these field modes are the well-known plane waves. They can be labeled by
transverse wave numbers kx, ky, by a polarization index s = 1, 2, and by a ± sign
signifying the direction of propagation along the z direction. Thus the index m, which
we used to label modes in the preceding Section, is actually a list:

m ≡ kx, ky, s,±. (77)

The following notation will be used for the frequency- and wave number-dependent
propagation constant of a plane wave characterized by its angular frequency ω:

βkx,ky,s,±(ω) ≡ kz(ω, kx, ky) =
√
k2(ω)− k2x − k2y, (78)

where k2(ω) ≡ ε(ω)ω2/c2 depends on the dispersive properties of the medium through
the permittivity ε.
Electric and magnetic amplitudes in plane waves are mutually determined by

Maxwell’s equations. We can choose them as

Ekx,ky,s,± = es exp [ikxx+ ikyy ± ikz(ω, kx, ky)] (79)

Hkx,ky,s,± =
1

μ0ω
k× Ekx,ky,ω,s,±. (80)

The polarization of modal fields is determined by polarization vectors es=1,2 which
are of unit length and are normal to the wave-vector

k = {kx, ky, kz ≡
√
k2(ω)− k2x − k2y}. (81)

Using the above formulas, it is straightforward to calculate the modal normalization
constant

2Nkx,ky,s,±(ω) =
∫
z.[Em ×H∗m −Hm × E∗m]dxdy

= 2z · [es × (k× es)] 1
μ0ω

= ±2kz(ω, kx, kz) 1
μ0ω

(82)
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Nkx,ky,s,±(ω) = ±
kz(ω, kx, kz)

μ0ω
. (83)

Now we can insert expressions for modal fields and the corresponding normalization
constant into coupled mode equation Eq. (76) to obtain

∂zAkx,ky,s,±(ω, z) = ∓
ωμ0

2kz
e∓ikzz

∫
dxdydt

LxLyT
ei(ωt−k·r) × es · [J(r, t, z) + ∂tP(r, t, z)].

(84)
The above integral is nothing but a spatial and temporal Fourier transform, and one
can write the equations in the spectral domain

∂zAkx,ky,s,+(ω, z) =
ω

2ε0c2kz
e−ikzzes · [iωPkx,ky (ω, z)− Jkx,ky (ω, z)]. (85)

This is the propagation equation that will actually be solved numerically because it
is cast in terms of the slowest variables our propagation problem has. We can see that
the only source of evolution in spectral amplitudes is nonlinearity.
For those who prefer to see evolution equations for electric fields proper, we express

the above in terms of the electric field rather than in terms of modal expansion
coefficients. From a modal expansion, the transverse part of the electric field is

E⊥kx,ky,+(ω, z) =
∑
s=1,2

e⊥s Akx,ky,s,+(ω, z)e
ikz(ω,k⊥)z, (86)

and therefore its z derivative reads

∂zE
⊥
kx,ky,+(ω, z) = ikz(ω,k⊥)E

⊥
kx,ky,+(ω, z) +

∑
s=1,2

e⊥s ∂zAkx,ky,s,+(ω, z)e
ikz(ω,k⊥)z.

(87)
Using Eq. (85), we obtain the vectorial UPPE for a homogeneous medium:

∂zE
⊥
kx,ky,+(ω, z) = +ikzE

⊥
kx,ky,+(ω, z)

+
∑
s=1,2

e⊥s es · [
iω2

2ε0c2kz
Pkx,ky (ω, z)−

ω

2ε0c2kz
Jkx,ky (ω, z)]. (88)

Of course, an analogous equation holds for the backward propagating component:

∂zE
⊥
kx,ky,−(ω, z) = −ikzE⊥kx,ky,+(ω, z)

−
∑
s=1,2

e⊥s es · [
iω2

2ε0c2kz
Pkx,ky (ω, z)−

ω

2ε0c2kz
Jkx,ky (ω, z)]. (89)

This pair of equation is exact and completely analogous to the pair of z-propagated
equations discussed in the previous section. Because the nonlinear polarization in
these equations results as a response to the complete electric field, they cannot be
used to calculate the forward field in isolation (i.e. without its backward propagating
counterpart). The equation becomes unidirectional only when the following approxi-
mation can be adopted:

P(E),J(E)→ P(Ef ),J(Ef ). (90)

In other words, to obtain a closed system which is restricted to a single direction,
we must require that nonlinear polarization can be calculated accurately from only
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the forward propagating field. This means that UPPE is only applicable when the
back-reflected portion of the field is so small that its contribution to the nonlinearity
can be neglected. Note that this assumption is inherent in any one-way propagating
pulse evolution equation. Since it is the only approximation required for the UPPE,
it should not be surprising that all other pulse propagation models can be derived
from the UPPE by adopting further approximations.

2.3.4 z-propagated UPPE: Simplified, practical version

Equation (88), with nonlinear polarization approximated by Eq. (90) can easily be-
come a rather large system to solve numerically. This is especially true for experiments
with wide-beam, multi-TW lasers. Fortunately, in most cases transverse dimensions of
resulting structures remain relatively large in comparison to wavelength, and further
approximations are possible. For example in femtosecond filamentation in gases, the
typical diameter of the filament core is about hundred microns which dimension is
large in comparison with the laser wavelength. Consequently, the longitudinal vector
component of the electric field is much smaller than the transverse (x, y) components,
and can be neglected in calculation of the nonlinear medium response. It thus makes
sense to take advantage of this fact to obtain a simpler equation.
Concretely, one can neglect the z components of the field and polarization vectors.
In such a situation the sum over polarization vectors reduces approximately to unity

∑
s=1,2

e⊥s es ≈ 1. (91)

To see this, it is enough to recall that the left-hand side constitutes a projector onto the
wave-vector (recall that these vectors are mutually orthogonal). As the wave-vector
is pointing in the direction almost parallel to the beam axis, it is also approximately
a unity operator in the vector subspace spanned by x, y.
Replacing the transverse projection by unity, the full UPPE simplifies into an

equation for transverse component(s)

∂zEkx,ky (ω, z) = ikzEkx,ky (ω, z) +
iω2

2ε0c2kz
Pkx,ky (ω, z)−

ω

2ε0c2kz
Jkx,ky (ω, z),

kz =
√
k2(ω)− k2x − k2y. (92)

This is the most useful form for practical calculation, and is therefore called simply
UPPE. While we write it as a scalar equation, it should be understood that it is in
general coupled to its counterpart governing the other polarization. The two polar-
ization components of the electric field both contribute to the nonlinear polarization
and this is how they become mutually coupled.

2.3.5 Other propagation models as approximations of UPPE

The previous section showed that Unidirectional Pulse Propagation Equations can be
rigorously derived under a very general assumption that nonlinear interaction between
light and matter occurs in a regime which makes it possible to calculate the nonlinear
medium response with sufficient accuracy only from the forward-propagating field
component. Because this is how all one-way pulse propagation equation treat the
nonlinearity, one can expect that other types of equations can be derived from UPPE.
In fact, a universal scheme to derive all other propagation models can be given.
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Several types of unidirectional propagation equation appear frequently in the liter-
ature on nonlinear optics. The most important examples are Non-Linear Schrödinger
(NLS) equation [18], Nonlinear Envelope Equation [17] (NEE), the First-Order Prop-
agation equation [14] (FOP), Forward Maxwell’s Equation [11] (FME), and several
other equations that are closely related to these. All of these can be understood as
approximations to the UPPE.
The unified derivation procedure, described in detail in Ref. [5], brings various

propagation equations under one roof, and elucidates exactly what approximations
must be assumed to justify their original derivations. This allows us to compare phys-
ical assumptions and approximations underlying different equations. It also reveals
relations between equations which may not be obvious either because of their appar-
ently different form, or because of different methods used in the original derivations.
It is instructive to break the derivation procedure into several steps. As a first

step, we adopt a scalar, one-component approximation and write the Unidirectional
Pulse Propagation Equation in the canonical form:

∂zEkx,ky (ω, z) = iKzEkx,ky (ω, z) + iQ
Pkx,ky (ω, z)

2ε0
(93)

where

Kz(kx, ky, ω) =
√
k2(ω)− k2x − k2y (94)

and

Q(kx, ky, ω) =
ω2

c2Kz(kx, ky, ω)
(95)

will be called nonlinear coupling. In most cases, the concrete form of the nonlinear
polarization P is unimportant, and we will assume that it can be specified in terms
of an algorithm which accepts the electric field (in general as a function of time at a
given spatial location) as input.
Let us note that this one-component, or scalar representation can be still under-

stood as a description of a single polarization in a coupled system describing two
transverse vector components of an optical field. While each equation appears scalar,
the two become coupled through the polarization term, for example due to the non-
linear birefringence. These coupling effects can play a role even if a laser beam is
much wider than the light wavelength, and can lead to a rich polarization dynamics
within femtosecond filaments. What is neglected at this step is the longitudinal part
of the electric field. That only becomes important when the beam focuses to a size
comparable with wavelength. However, in the naturally occurring filaments, i.e, with-
out focusing by short focal-length optical elements, such extreme focusing is never
achieved, because self-focusing collapse is always arrested either by chromatic disper-
sion [30] or by the free-electron induced de-focusing [8,31]. Thus, for many practical
purposes, the above representation is sufficiently rich and accurate.
In the second derivation step, we replace couplings Kz and Q by suitable approx-

imations. In most cases, they are closely related to Taylor expansions in frequency
and in transverse wave numbers. It is at this stage that artificial parameters are in-
troduced into a propagation model (a typical example is the reference frequency).
It is important to keep in mind that information extracted from simulations should
not depend on such degrees of freedom. In this respect, the improvements introduced
into various pulse evolution equations can be viewed as corrections which (partially)
restore the invariance of the model with respect to these choices.
Having specified approximations for the linear and nonlinear coupling, we are still

in the real-field representation. However, most of the published models are written
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using envelopes. Thus, in the next step, we obtain envelope equations. To do this,
one can expresses the field in terms of an envelope by factoring out the carrier wave
at a chosen reference angular frequency ωr with the corresponding wave-vector kr =
Kz(0, 0, ωr):

E(r, t, z) = A(r, t, z)ei(krz−ωrt). (96)

A similar factorization is of course introduced for the nonlinear polarization P (r, t, z)
as well.
The final step consists in transforming the equation from the spectral- to the real-

space representation. Mathematically, this is nothing but a Fourier transform, and
the following standard replacement rules for differential operators provide quick and
easy way to do this transformation:

ikx → ∂x iky → ∂y (ω − ωR)→ i∂t ∂z → ik(ωR) + ∂z. (97)

Finally, in most cases we also transform to a frame moving with a suitable group
velocity such that the pulse remains close to the center of the computational domain.
We invite the reader to consult reference [5] which shows details of application of
this method to several examples of propagation equations. Also note that the above
procedure is closely related to that described in Section 2.2, where the Nonlinear
Envelope Equation was derived from the Forward Maxwell Equation.

2.4 Medium response and nonlinear interactions

This section describes typical components of medium response models in nonlinear
optics of ultrashort pulses. They all can be viewed as contributions to the polarization
or to the induced current density, both of which appear in Maxwell’s equations or in
the wave equation as source terms.

2.4.1 Optical Kerr effect

We will use the optical Kerr effect as a prototypical example of nonlinear source
term that can be included in the polarization. At the dominant third order for a
centro-symmetric medium, the nonlinear polarization P reads:

P ≡ ε0χ(3)E3. (98)

By expressing the scalar components of the electric field as an envelope and a carrier:
E = 1

2 [E exp(ik0z − iω0t) + E∗ exp(−ik0z + iω0t)], we obtain an expression for E3:

E3 = 1
8 [E3 exp(i3k0z − i3ω0t) + 3|E|2E exp(ik0z − iω0t) + c.c.], (99)

where c.c. denotes complex conjugation. By introducing Eq. (99) into Eq. (98), we
identify the nonlinear polarization envelope P from its carrier envelope decomposition
P = 1

2 [P exp(ik0z − iω0t) + P∗ exp(−ik0z + iω0t)]:

P ≡ ε0χ(3) 34 |E|2E . (100)

It is readily seen that Equation (99) contains a component oscillating at the third
harmonic (3ω0) that has been discarded in the nonlinear polarization, as we only
identified the fundamental components oscillating at ω0 to derive the nonlinear po-
larization envelope (100). Thus, introduction of Eq. (100) in an envelope propagation
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model describes the effects called self-focusing (for a positive χ(3)) and self-phase mod-
ulation but not third-harmonic generation. Next section will show how to describe
the latter effect either with an envelope or a carrier resolving propagation equation.
Up to now, we have written our models with hidden material coefficients such as,

e.g., the linear susceptibility χ(1)(ω) which is included in the dispersion relation k(ω)
of the medium, in turn involving specific resonance frequencies and amplitudes. For
practical situations, it is needed to supply numerical codes with parameter values for
the material coefficients. For the nonlinear third-order susceptibility, values may be
obtained from ab-initio calculations but measurements of the nonlinear index coeffi-
cient n2 ≡ 3χ(3)/4ε0cn20 in units of m2/W may also be found in the literature. For
instance, see Refs. [27] for optical crystals. By introducing the above definition for
the nonlinear index coefficient n2 in Eq. (100), and by using the definition of the
intensity I ≡ ε0cn0|E|2/2, an expression is obtained for the nonlinear polarization en-
velope modeling an instantaneous Kerr response of the medium due to the electronic
contribution to the polarization:

P
ε0
≡ 2n0n2IE , (101)

where both the linear refraction index n0 and the nonlinear index n2I are dimen-
sionless, since I is expressed in W/m2 and n2 in m2/W. Eq. (101) can then be intro-
duced into all nonlinear envelope propagation equations. Using for instance Eq. (54)
to describe the propagation of a monochromatic beam, which allows us to neglect dis-

persion (k
(2)
0 = 0), we obtain the NLS equation with its standard cubic nonlinearity:

∂E
∂z
=
i

2k0
Δ⊥E + iω0

c
n2IE (102)

Equation (102) models beam propagation under the effects of diffraction and the opti-
cal Kerr effect, leading to beam self-focusing (for a positive n2), i.e. to the cumulative
lens effect bending the phase fronts due to the higher refraction index in the most
intense part of the beam. In a planar geometry, beam self-focusing and diffraction
alternatively prevail, resulting in beam width oscillations without energy losses [28].
In cylindrical geometry, it is known that Eq. (102) is mathematically singular: Beams
with power above a certain threshold Pcr undergo catastrophic collapse at a finite
distance [29]. For Gaussian beams, this critical threshold is given by:

Pcr =
3.77πn0
2k20n2

. (103)

For a collimated Gaussian beam E = E0 exp(−r2/w20) of power Pin ≡ πw20I0/2, whereI0 ≡ ε0cn0E20/2, the self-focusing (collapse) distance follows [29]:

zc =
0.367zR√

[(Pin/Pcr)1/2 − 0.852]2 − 0.0219
(104)

where zR ≡ k0w20/2 denotes the Rayleigh (typical diffraction) length. Section 3.1.2
shows how to implement model (102) and Eqs. (103) and (104) provide analytical
scaling laws for the collapse distance and the critical power threshold that can be
used as test cases to check the correct implementation of the model.

2.4.2 Optical Kerr effect and third harmonic generation

Closely related to the optical Kerr effect caused by electrons in bound states is third
harmonic generation which is often observed in femtosecond filaments. In fact, from
a certain point of view the two effects are actually one.
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Consider an instantaneous (electronic) Kerr effect in an isotropic medium. Also
consider a propagation model which simulates directly the physical field rather than
its envelope. A polarization response that is third-order in the electric field E must
be constructed solely from E taken at the given instant in time, so there is a single
vector to work with. That is why, the only possible form of an instantaneous third-
order nonlinearity is as given in Eq. (98).
Note that as soon as there is memory, two frequency dependent components of

third-order susceptibility tensor are needed for full description. The important point
is that the frequency content of Eq. (98) consists of both the fundamental frequency
of E and of its third harmonic. This is the main source of third harmonic radiation
observed in femtosecond filaments (although it is not the only one).
It is worthwhile to remark that Readers will find in the literature also a very differ-

ent approach to modeling third-harmonic generation. In works and simulations based
on application of envelope pulse propagation equations, several authors used two enve-
lope functions, one for the fundamental frequency and one for the third harmonic gen-
eration [32,33]. The electric field decomposition into carriers and envelopes with these
two components reads: E = 1

2 [Eω0 exp(ikω0z− iω0t)+E3ω0 exp(ik3ω0z− i3ω0t)+c.c.],
and the nonlinear polarization can be decomposed similarly. Introduction of this de-
composition into Eq. (98) yields expressions for the fundamental and third harmonic
envelope components of the nonlinear polarization:

Pω0 = ε0χ(3) 34 [(|Eω0 |2 + 2|E3ω0 |2)Eω0 + E∗2ω0E3ω0 ], (105)

P3ω0 = ε0χ(3) 34 [(|E3ω0 |2 + 2|Eω0 |2)E3ω0 + E3ω0/3]. (106)

For each component Pω0 and P3ω0 , the first two terms represent self- and cross-phase
modulation. The third terms are responsible for energy exchange between fundamen-
tal and third harmonic fields, namely third harmonic generation and back conversion.
An envelope propagation equation for each component Eω0 and E3ω0 is derived fol-
lowing the methods presented in section 2.2 and follow the canonical form valid for
envelopes with broad spectra.
It has to be emphasized that the two-envelope method can only be justified as

long as spectral components centered around the fundamental and third harmonic
frequency are well separated. However, spectra can become extremely broad in fem-
tosecond filamentation. Then, distinction between fundamental and third harmonic
is impossible, and any two-envelope parametrization is therefore non-unique leading
to a fundamentally inconsistent model. Thus, if harmonic frequencies are expected to
appear in the numerical experiment and if the spectrum for the fundamental compo-
nent broadens sufficiently to overlap the third harmonic spectrum, a carrier resolving
model implementing the optical Kerr effect as in (98) should be used. This will natu-
rally capture also generation of other odd harmonics in a cascade process which may
become important for longer-wavelength filamentation.

2.4.3 Nonlinear absorption

The NLS Equation (102) leads to optical beam collapse in cylindrical geometry but in
a real experiment, saturation mechanisms prevent collapse to occur [31]. This means
that the mathematical singularity of Eq. (102) must be cured by extending the model
to a more realistic case. Close to the collapse, the beam intensity is sufficient to
ionize the medium after absorption of several photons. The process is associated with
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nonlinear absorption of energy, which is the main physical effect playing a saturation
role in preventing the collapse to occur7.
Nonlinear absorption is described by an effective current J such that the aver-

aged dissipated power corresponds to that necessary for optical field ionization of the
medium with density of neutral atoms ρnt, ionization potential (or gap for a solid
medium) Ui and intensity-dependent ionization rate W (I) [35]. Different ionization
regimes exist and correspond to different ionization rates. For example for intensities
smaller than a certain threshold, ionization occurs in the multiphoton regime and re-
quires absorption of several (K) photons to liberate an electron. In this paper, without
loss of generality, we will consider only the multiphoton regime for which a simple
law for ionization rates reads W (I) = σKIK , where σK denotes the cross section for
multiphoton ionization. The above condition for power dissipation is expressed as

1

2
J ·E∗ =W (I)K�ω0ρnt. (107)

The current is therefore obtained as

J

ε0c
= n0

W (I)K�ω0ρnt
I E, (108)

and its envelope counterpart, in the multiphoton regime, reads as

J
ε0c
= n0βKIK−1E , (109)

where βK ≡ K�ω0σKρnt denotes the cross section for multiphoton absorption.
By introducing Eq. (109) into the nonlinear envelope equations derived in section

2.2, the effect of multiphoton absorption is accounted for in propagation models. For
instance, with the change P → P+iJ /ω0 the NLS Equation (54) for a monochromatic
beam undergoing diffraction, optical Kerr effect and multiphoton absorption becomes:

∂E
∂z
=
i

2k0
Δ⊥E + iω0

c
n2IE − βK

2
IK−1E . (110)

Equation (110) is an extended NLS equation that is also valid to describe the propa-
gation of pulses provided they keep a narrow spectrum during their nonlinear prop-
agation.
An evolution equation for the pulse intensity is obtained by multiplying Eq. (110)

by E∗ and by adding the result to its complex conjugate:
∂|E|2
∂z

=
i

2k0
[E∗Δ⊥E − EΔ⊥E∗]− βKIK−1|E|2. (111)

Note that the Kerr term is no longer present in Eq. (111), reflecting the fact that
the optical Kerr effect does not directly modify the laser beam intensity but leads
to nonlinear phase accumulation. Spatial phase gradients mediated by the first term
on the r.h.s. of Eq. (111) then lead to an energy flux toward the beam center, which
is responsible for an increase of the beam intensity. For a very large beam, the term
[E∗Δ⊥E −EΔ⊥E∗] can be neglected in the central part of the beam8, the intensity of
which is governed by:

∂I
∂z
= −βKIK . (112)

7 Note that plasma induced defocusing can also prevent collapse to occur, however, non-
linear absorption of energy is necessary to prevent subsequent catastrophic behavior [34].
8 By denoting φ the phase of the beam, a straightforward calculation shows that [E∗Δ⊥E−
EΔ⊥E∗] = 2i∇⊥ · (|E|2∇⊥φ). For a large beam, this term is small close to the beam center
where the phase is flat.
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An analytical solution of Eq. (112) reads

I(z) = I0
(1 + (K − 1)βKIK−10 z)1/(K−1)

. (113)

Tests of the numerical implementation of nonlinear energy losses can be easily made
by comparison of simulation results with their analytical counterpart from Eq. (113).

2.4.4 Plasma generation and plasma defocusing

When the pulse is so intense that it ionizes the medium, the contribution of the
plasma follows from the evolution equation for the plasma current density:

∂J

∂t
+
J

τc
=
q2e
me
ρE, (114)

where ρ denotes the electron density and τc is the electron collision time.
Equation (114) can be solved in the Fourier domain and its solution introduced in

propagation equations with a source term (ω/c)(Ĵ/ε0c) involving spectral components
of the free charge current. From Eq. (114), we obtain:

ω

c

Ĵ

ε0c
=
q2eωτc

ε0c2me

1 + iωτc
1 + ω2τ2c

ρ̂E. (115)

We rewrite Eq. (115) as:

ω

c

Ĵ

ε0c
= k(ω)σ(ω)ρ̂E, (116)

where

σ(ω) =
ω0

n(ω)cρc

ω0τc(1 + iωτc)

(1 + ω2τ2c )
(117)

is a complex frequency-dependent coefficient with real part equal to the cross section
for inverse Bremsstrahlung [36] and ρc ≡ ε0meω20/q2e , the critical plasma density
above which the plasma becomes opaque to the laser beam at frequency ω0. This is
known as the Drude model. Note that σ(ω) is not effectively depending on the central
frequency of the laser pulse ω0 since the quantity ω

2
0/ρc in Eq. (117) is a constant,

the critical density being only a reference chosen for the pulse central frequency ω0.
The current in Equation (116) accounts for plasma absorption (real part) and

plasma defocusing (imaginary part). Both effects are frequency dependent, for ex-
ample defocusing is stronger for longer wavelengths. It can be important that our
models capture such dispersive behavior, for example in pump probe experiments
with different pulse wavelengths.
To close the model, one needs to know the evolution of the electron density ρ(r, t)

entering in Eq. (116). It is governed by a rate equation in the form:

∂ρ

∂t
=Wofi(I)(ρnt − ρ) +Wava(I)ρ (118)

where the first term on the r.h.s. of Eq. (118) represents optical field ionization and
the second term represents avalanche ionization. As stated in section 2.4.3, optical
field ionization in the multiphoton regime occurs with a rate Wofi(I) = σKIK . The
rate for avalanche ionization can be considered as proportional to the pulse intensity
Wava(I) = σ(ω0)I/Ui, where σ(ω0) is the inverse Bremsstrahlung coefficient given by
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Eq. (117) evaluated at the central frequency ω0 of the laser pulse and Ui the ionization
potential.
An example of nonlinear envelope equation with nonlinear terms accounting for

the optical Kerr effect, nonlinear absorption and plasma effects is obtained by intro-
ducing the corresponding source terms in the FEE (41):

∂Ê
∂z
=

i

2k(ω)
Δ⊥Ê + i[k(ω)− κ(ω)]Ê + iω

c

n0

n(ω)
n2ÎE − βK

2
ÎK−1E − σ(ω)

2
ρ̂E . (119)

2.4.5 Raman-Kerr effect

The optical Kerr effect includes in general the electronic contribution which is nearly
instantaneous and a delayed component of fraction α, due to stimulated molecular
Raman scattering.
Air is by a large part made of two-atomic molecules with different polarizabilities

parallel and perpendicular to their symmetry axes. This leads to a nonlinear effect
which is referred to as stimulated Raman effect, although the recent nomenclature
acknowledges the fact that dynamic reorientation of molecules plays a central role
in it.
The interaction energy of a molecule in an external field is such that it prefers to

align with the direction of the field. When a femtosecond pulse hits such a molecule,
it excites rotational motion; this is a stimulated Raman effect. Molecular rotation
then changes the effective linear polarizability of the molecule as projected on the
direction of the field. Because the interaction Hamiltonian is quadratic in field, the
effect is of third-order. It is therefore often considered a companion of the electronic
Raman effect. Taken a very different microscopic origin, this may seem arbitrary, but
one has to keep in mind that manifestations of the two effects (i.e. self-focusing) are
very difficult to distinguish in longer pulses.
A proper, first-principles model would need to integrate quantummechanical equa-

tions of motion for a density matrix describing the rotational state of an ensemble of
molecules. Note that such a system is to be solved at each spatial grid location, and
at each propagation step! Instead of this (relatively) difficult calculation, the Raman
effect is approximately parametrized as described next.
Let us denote Qi a generalized coordinate of an effective oscillator embedded in

the medium which responds to a force that is quadratic in external field,

∂2Qi

∂t2
+ 2Γ

∂Qi

∂t
+ (ω2R + Γ

2)Qi = (ω
2
R + Γ

2)|E(r, t, z)|2, (120)

for Qi with boundary conditions ∂Qi/∂t(−∞) = 0 and Qi(−∞) = 0. The solution to
Eq. (120) reads:

Qi(r, t, z) =

∫ t
−∞
R0 exp[−Γ(t− τ)] sin[ωR(t− τ)]|E(r, τ, z)|2dτ, (121)

where R0 = (Γ2 + ω2R)/ωR.
The nonlinear polarization for the Kerr term with its Raman contribution there-

fore reads as

P
ε0
= 2n0n2

(
(1− α)I(r, t, z) + α

∫ t
−∞
R(t− τ)I(r, τ, z) dτ

)
E , (122)
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where I = ε0cn0|E(r, t, z)|2/2. The function R(t) mimics the molecular response with
a characteristic time Γ−1 and frequency ωR:

R(t) = R0 exp(−Γt) sinωRt (123)

One advantage of the above phenomenological approach is that it can be applied also
to other types of stimulated Raman scattering. For example in glasses, this single-
oscillator model can serve as an acceptable approximation of what is actually a signif-
icantly more complex process. It can also be generalized to include multiple effective
oscillators, which in turn can mimic the true medium response quite accurately. In
water, the single-oscillator model could accurately reproduce measured signatures of
stimulated Raman scattering in angularly resolved spectra [37,38]. We will discuss
efficient numerical implementation of this and similar models in Sect. 3.3.

3 Implementation of propagation models

This section is devoted to a presentation of the numerical implementation of prop-
agation equations. As shown in the previous section, a canonical form exists for all
unidirectional propagation equations. This form has the same structure for enve-
lope and for carrier-resolving equations, opening the question of the possibility for
a universal scheme and solver. A numerical scheme valid for the UPPE should in-
deed apply for solving all other equations. However, there are a few distinguishing
features in the propagation equations in the canonical form making worth present-
ing different schemes. First, carrier-resolving propagation equations involve real fields
as in Maxwell equations, whereas envelope equations deal with complex envelopes.
This implies slight differences in treating the spectra of real fields compared to com-
plex envelope spectra. Second, nonparaxiality is one of the distinguishing features of
the UPPE, making necessary to solve that equation in the three-dimensional spectral
domain for frequency and wave numbers, whereas alternatives exist for paraxial equa-
tions, be they propagating envelopes or fields. At the price of a loss of universality,
paraxial equations can indeed be solved by finite difference methods in the spatial
domain, by space marching each frequency component after a one-dimensional tem-
poral to spectral Fourier transform. We adopt a presentation covering both options
with a first section devoted, but not restricted to paraxial envelope equations. We
will start by the simplest propagation equation which describes diffraction of a laser
beam as this provides the basic building block of the general scheme valid for all
paraxial propagation equations. We then consider resolution of the UPPE in Fourier
space, which apply in general to nonparaxial, carrier-resolving or envelope, propaga-
tion equations.
The generic form of the considered propagation equations is retrieved in models

for different physical problems, therefore the methods we describe apply as well in
different fields. The reader is refferred to [39] and reference therein for a review of
numerical schemes we apply to propagation equations.

3.1 Envelope propagation models

In this section, we consider paraxial envelope equations. The proposed implementation
methods extend in a straightforward way to paraxial carrier-resolving equations, thus
without loss of generality, we restrict the presentation to complex envelopes.

3.1.1 Diffraction

Diffraction occurs in all media and even in vacuum. Not surprisingly, the structure
of the diffraction operator as a product of a frequency dependent coefficient and a
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transverse Laplacian acting only on transverse coordinates is the common feature of all
paraxial envelope or carrier-resolving propagation equations. Implementing diffraction
therefore serves as a basic building block for all paraxial equations. We first consider
monochromatic beams, i.e. a sufficiently long laser pulse with central wave number k0
and a narrow spectrum so that all frequency dependence can be neglected. Diffraction
of the monochromatic beam is described by the paraxial equation

∂E
∂z
=
i

2k0
Δ⊥E . (124)

We start by describing beam propagation in 1+1 dimensions, i.e., one transverse
dimension and one evolution (or propagation) variable z. We will consider either a
planar geometry with transverse direction x, or a cylindrical geometry with revolution

symmetry, with a radial transverse variable r ≡ √x2 + y2. From the point of view
of the computational cost, the revolution symmetry is an interesting geometry for
propagating a laser beam when it does not break-up into multiple beamlets since its
cost corresponds to that of a 1-dimensional numerical method. In this section E is
therefore assumed to depend only on the transverse variable x or r, and the evolution
variable z. The transverse Laplacian operator is therefore reduced to Δ⊥ ≡ ∂2/∂x2
in the planar geometry, or to Δ⊥ ≡ ∂2/∂r2 + (1/r)∂/∂r in cylindrical geometry. To
avoid redundancy, we will use r as a transverse variable but switching from cylindrical
to planar geometry can be implemented in a single generic tool: Unless otherwise
stated, all formulas are the same for both geometries with r ↔ x. We will specify
minor differences between planar and cylindrical geometry by using x instead of r
only where it is necessary.

Initial condition. The propagation starts at z = 0 where the beam amplitude and
phase profiles are known, e.g., the beam has a Gaussian shape with quadratic spatial
phase modeling a flat-phase beam having passed through a lens of focal length f :

E(r, z = 0) = E0 exp
(
− r

2

w20
− ik0r

2

2f

)
. (125)

The quantities w0 and E0 are the beam width and the initial amplitude.
Boundary conditions. Boundary conditions must also be specified to solve Equa-
tion (124). In free space, one usually requires that the field vanish far from the peak.
The highest order derivative in Equation (124) is second order, thus two boundary
conditions must be specified at the boundaries of the numerical grid r = rmin and
r = rmax. These depend on the type of beam one wants to model.
In a cylindrical geometry, standard beams have intensity with a zero-slope at the

origin and vanish far from the origin, which gives the boundary conditions:

∂E(r, z)
∂r

∣∣∣∣
r=0

= 0, (126)

E(r = rmax, z) = 0. (127)

In a planar geometry, the boundary conditions for a standard beam vanishing far
from the peak read:

E(x = xmin, z) = 0, (128)

E(x = xmax, z) = 0. (129)
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Boundary conditions (128) and (129) in a cylindrical grid would be suitable for the
propagation of vortex beams (having a zero field and phase singularity at the origin).

On finite difference schemes. Finite difference scheme consist in representing the
solution to the original PDE by its values at discrete set of points and replacing
the PDE by a set of coupled equations for these discrete quantities. In practice,
we discretize the transverse variable r to form a numerical grid of finite size. For a
uniform grid with N⊥ + 2 grid points, i.e., N⊥ inner points and 2 boundaries. We
define rj = rmin+jΔr, j = 0 . . . N⊥+1 and the step-size Δr = (rmax−rmin)/(N⊥+1).
For a cylindrical geometry rmin = 0. Similarly to the discretization of the transverse
variable, we will describe the propagation over a distance zmax by making steps zn =
nΔz, n = 0 . . . Nz of constant size Δz. Let E

n
j denote E(r = rj , z = zn).

A standard task of numerical analysis is to design robust algorithms, which have
desirable properties including good numerical stability, accuracy, and efficiency with
respect to computational time.
Discretization of PDEs is associated with local and global truncation errors due

to the approximation of partial derivatives by their discretized versions. For example
in Eq. (124), the evolution operator is discretized as:

∂E
∂z
(r = rj , z = zn) �

En+1j − Enj
Δz

+O(Δz), (130)

which is first-order accurate in Δz. A second-order accurate discretization of the
second-order space-derivative appearing in the transverse Laplacian reads:

∂2E
∂r2
(r = rj , z = zn) �

Enj+1 − 2Enj + Enj−1
Δr2

+O(Δr2). (131)

The local truncation error in the numerical solution is the error generated at a partic-
ular step, when the solution at the previous step is considered as exact (in practice, it
is not exact, except if it corresponds to the initial condition). For example Eq. (131)
gives a second order local truncation error. The cumulative error in the numerical
solution to a PDE on an interval in the evolution variable is called the global trun-
cation error and the order of accuracy is the order of the global truncation error.
Numerical stability refers to the fact that a numerical calculation does not amplify

truncation or approximation errors. If approximation errors decay as the computation
is carried forward, the numerical scheme is stable. If the errors grow, the numerical
solution departs from the correct physical behavior of the modeled system and the
numerical scheme is said to be unstable. The stability of finite difference schemes
applied to linear partial differential equations can be commonly determined by a von
Neumann stability analysis [40,41] which is based on the decomposition of the so-
lution including the instability waves representing errors into Fourier series and a
linear stability analysis of these waves. Depending on the numerical scheme, stability
can require restrictive conditions on the step-sizes to be fulfilled. Scheme stability is
in general difficult to investigate when the partial differential equations under con-
sideration are nonlinear or nonuniform. Therefore, stability conditions on step-sizes
associated with the linear-part of our canonical propagation equation may not be suf-
ficient to ensure the stability of the complete scheme but constitute a good starting
guess of the restrictions on the step sizes used in the scheme.
Implicit vs explicit schemes: Finite difference schemes are furthermore classified

into explicit and implicit schemes. An explicit scheme allows for the calculation of
quantities at each position J on the grid for the (N+1)th evolution variable, say EN+1J ,
explicitly from the previously known quantities Enj , n = 0 . . . N , j = 0 . . . N⊥+1. An
implicit scheme requires the numerical resolution of implicit equations coupling EN+1j
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for several j with the already known quantities in order to find EN+1j for all j, and
are computationally more expensive. However, the efficiency of a calculation must
be evaluated with stability constraints in mind. Explicit finite difference schemes for
solving Eq. (124) are associated with very restrictive stability conditions in the form
Δz � k0Δr2, ruining the advantage of an explicit scheme [41]. We leave it to the
reader to analyze the details in Ref. [41] and we will directly present a resolution
method based on an implicit method, namely the Crank-Nicolson method [42], the
computational cost of which is balanced by the fact that it is unconditionally stable
and allows us to replace many small explicit steps by a single large implicit step to
advance the solution.

Crank-Nicolson method. A standard and efficient scheme to perform numerical
simulations of Eq. (124) and equations having the same structure, as e.g. Eq. (21),
is the Crank-Nicolson scheme [42]. It is an implicit, unconditionally stable numerical
scheme that is second order accurate in both Δr and Δz.
Below, Δj denotes the discretized diffraction operator defined as

ΔjE
n
j ≡ Enj−1 − 2Enj + Enj+1 +

ν

2j
(Enj+1 − Enj−1), (132)

where ν = 0 for planar geometry and ν = 1 for cylindrical geometry. Δj can
be formally represented as a tridiagonal matrix acting on the vector Enj , with
j = 0 . . . N⊥ + 1.

ΔjE
n
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 v0 0 · · · · · · 0 0
u1 −2 v1 0 · · · 0 0

0
. . .
. . .
. . . 0 0 0

0 0 uj −2 vj 0 0

0 0 0
. . .
. . .

. . . 0
0 · · · · · · 0 uN⊥ −2 vN⊥
0 · · · · · · · · · 0 uN⊥+1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

En0
En1
...
Enj
...
EnN⊥
EnN⊥+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(133)

where uj = 1 − ν/2j and vj = 1 + ν/2j. At this stage, note that u0 and v0 are
ill-defined for a cylindrical geometry. In fact, the coefficients in the first and last lines
of the matrix Δj will be replaced later to take boundary conditions into account. We
therefore assume v0 = 1 for both planar and cylindrical geometries.
The Crank-Nicolson scheme consists in discretizing the evolution operator in Eq.

(124) as ∂zE(r = rj , z = zn) = (En+1j − Enj )/Δz, thus it is centered at step n+ 1/2.
On the right hand side of Eq. (124), the diffraction operator is discretized and applied
to the average of the field at distance n and n+ 1 so as to center the scheme at step
n+ 1/2. This yields the implicit equation:

En+1j − Enj = iδ(ΔjEn+1j +ΔjE
n
j ) (134)

where δ = Δz/4k0(Δr)
2. The solution of Eq. (134) formally reads as

En+1j = (1− iδΔj)−1(1 + iδΔj)Enj , (135)

or equivalently:
L−En+1j = L+E

n
j (136)

and requires multiplication of the tridiagonal complex matrix L+ ≡ 1 + iδΔj by the
vector Enj , inversion of the tridiagonal complex matrix L− ≡ 1 − iδΔj and mul-
tiplication of L−1− by L+E

n
j . The above definition of matrix L+ and L− must be
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modified to take into account the boundary conditions. Equation (135) allows for
space marching the field over one propagation step. Applying it repeatedly for Nz
steps will thus propagate the input field En=0j over a distance NzΔz, where E

n=Nz
j

is obtained. Without modifications, the first line (j = 0) of Equation (135) reads as
(1+2iδ)E10−iδv0E11 = (1−2iδ)E00+iδv0E01 , which does not match the discretized ver-
sion of the boundary condition (126): E10 = 0, or that of (126). Boundary conditions
can be simply enforced by rewriting this first line of L− as (1, 0, 0, . . . , 0) for the planar
geometry, or as (1,−1, 0, . . . , 0) for the circular geometry, and the first line of L+ as
(0, . . . , 0) in both cases. In circular geometry, this ensures that a first-order-accurate
discretized version of Eq. (126) is satisfied: (E11 − E10)/Δr = 0. An implementation
of the boundary condition should at least match the order of the inner scheme. In-
troducing a ghost value E−1 at r = −Δr and a second-order-accurate version of Eq.
(126): (E11 −E1−1)/2Δr = 0 together with the discretization introduced in the scheme
for inner grid points (135) allows us to eliminate the ghost value and preserve the
overall second order accuracy of the scheme. The first lines of L± are obtained by
identifying the coefficients of: (1 + 4iδ)E10 − 4iδE11 = (1 − 4iδ)E00 + 4iδE01 . The last
lines of L− and L+ are treated similarly to enforce boundary condition (127). Thus,
the complex matrix L− and L+ including proper treatment of boundary conditions
reads:

L+E
n
j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
(o)
0,+ d

(o)
1,+ 0 0 0 0 0

iδu1 1− 2iδ iδv1 0 0 0 0

0
. . .

. . .
. . . 0 0 0

0 0 iδuj 1− 2iδ iδvj 0 0

0 0 0
. . .

. . .
. . . 0

0 0 0 0 iδuN⊥ 1− 2iδ iδvN⊥
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

En0
En1
...
Enj
...
EnN⊥
EnN⊥+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(137)

L−Enj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d
(o)
0,− d

(o)
0,− 0 0 0 0 0

−iδu1 1 + 2iδ −iδv1 0 0 0 0

0
. . .

. . .
. . . 0 0 0

0 0 −iδuj 1 + 2iδ −iδvj 0 0

0 0 0
. . .

. . .
. . . 0

0 0 0 0 −iδuN⊥ 1 + 2iδ −iδvN⊥
0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

En0
En1
...
Enj
...
EnN⊥
EnN⊥+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(138)

where first order accurate boundary conditions (o = 1) at the origin are enforced by:

d
(1)
0,+ = 0, d

(1)
1,+ = 0, (139)

d
(1)
0,− = 1, d

(1)
1,− = −ν, (140)

and ν is unity for cylindrical geometry or zero for the planar case. For second order
accurate boundary conditions (o = 2) at the origin:

d
(2)
0,+ = 1− 4iδ, d

(2)
1,+ = 4iδ, (141)

d
(2)
0,− = 1 + 4iδ, d

(1)
1,− = −4iδ. (142)
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Table 3. Crank-Nicolson Algorithm.

– 1. definition of useful data, e.g., beam width w0, focusing length f , laser wavelength
λ0, index of refraction n0 and central wave number k0 = n02π/λ0.

– 2. definition of grids and z-invariant quantities for space marching the field over one
step Eq. (135).
– number of inner grid points N⊥
– r-grid: rj = rmin + jΔr, for j = 0, · · · , N⊥ + 1
– matrix L+ and L−: L± = 1± iδΔj
– boundary conditions: replace first and last lines of L± as indicated in Eqs. (137)
and (138)

– calculation of the inverse L−1−
– calculation of the product L = L−1− L+

– 3. definition of the initial field E0j = E(rj , z = 0), j = 0 . . . N⊥+1, e.g., as in Eq. (125)
for a Gaussian beam

– 4. perform a loop for Nz =M×Kmax propagation steps, with an outer loop including
computationally expensive diagnostics each M steps and an inner loop including
costless diagnostics performed each step:

outer loop: k = 1, . . . ,Kmax
inner loop: m = 1, . . . ,M

n = (k − 1)M +m
Enj = LE

n−1
j

perform costless diagnostic n
end inner loop
perform expensive diagnostic k

end outer loop

Different type of boundary conditions can be implemented in a similar way, and po-
tentially involve more than a single line of the complex matrix L+ and L− for each
boundary. For example, it may be needed to add boundary layers on one or several
edges of the numerical box so as to avoid spurious reflection on the boundary in cases
where free-space propagation is desired. The goal of the boundary layer is to mimic
a physical process over a limited domain close to the boundary, that will prevent as
much as possible incoming waves to be reflected. This can be achieved with absorp-
tion of the incoming waves, or diffusion. With a careful selection of the boundary
layer features, the latter choice was shown to lead theoretically to no reflection and
was called perfectly matched layers boundary conditions [43].
We can now detail in table 3 the different steps to build a simple propagation

code for simulations of Eq. (124):
Steps 1 to 3 correspond to the initialization of the propagation. Step 4 consti-

tutes the bulk of the scheme; it is centered around one propagation step following
Eq. (135). By diagnostics, we mean the selection of a given set of computed data
and their storage in external files for post-processing. In order to save computational
time and memory, diagnostics can be separated into computationally expensive diag-
nostics and costless diagnostics. Costless diagnostics do not require long CPU time
or large disk-memory and can thus be performed at each step without significant
performance degradation. Typically, these concern sub-dimensional diagnostics such
as, e.g., monitoring of the maximum intensity vs propagation distance. In contrast,
expensive diagnostics require more computer resources, time or memory, such as mon-
itoring the full spatial, temporal or spectral- beam or pulse dynamics and not only
subdimensional slices. A proper balance between expensive and costless diagnostics
must be ensured for a good efficiency of the whole simulation.
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Spectral technique.We present in this section one of the most straightforward way
to implement a numerical scheme for solving Eq. (124). It consists in a spectral method
relying on a Fourier decomposition of the laser beam into its spectral components.
We assume here a planar geometry and note that the method extends easily to the
cylindrical geometry by replacing Fourier by Hankel transforms:

Ẽ(kx, z) =
∫ +∞
−∞

E(x, z) exp(−ikxx)dx. (143)

Applying this transformation to Eq. (124) leads to a simple set of ordinary differential

equations for the spectral components of the beam envelope Ẽ(kx, z):
∂Ẽ(kx, z)
∂z

= −i k
2
x

2k0
Ẽ(kx, z) (144)

which has a formal solution:

Ẽ(kx, z) = Ẽ(kx, z = 0)× exp
(
−i k

2
x

2k0
z

)
. (145)

From Eq. (145), the solution obtained by back transforming the spectral components
into the spatial domain reads

E(x, z) = 1
2π

∫ ∞
−∞
Ẽ(kx, z = 0)× exp

(
−i k

2
x

2k0
z + ikxx

)
dkx. (146)

The numerical implementation of this is made straightforward by the availability of
libraries including fast Fourier transform modules. We can now detail in Table 4
the different steps to simulate propagation governed by Eq. (124) with a Spectral
Decomposition Algorithm: Boundary conditions are assumed to be periodic and auto-
matically enforced by the Fourier decomposition, i.e., by the Fast Fourier Transforms
performed at each step. In practice, this means that a sufficiently large spatial box
must be chosen if this method is used to simulate free space propagation with fields
exponentially decaying far from the peak. In a too small box, a beam would sooner
or later hit a boundary and be artificially reintroduced at the opposite boundary.
Naturally Eq. (146) shows that the solution at an arbitrarily large propaga-

tion distance can be obtained in a single step from the input spectral components
Ẽ(kx, z = 0) to the final far-field Ẽ(kx, z), without iteratively space marching the
solution over Nz propagation steps of size z/Nz. This option is however restricted to
linear propagation equations. Multiple steps as indicated in table 4 become necessary
when nonlinear terms are added on the right hand side of Eq. (124), which is the
reason for having specified them in the scheme. Due to the availability of Fast Fourier
Transform routines in computational libraries and in spite of the imposed periodic
boundary conditions, this scheme is fully explicit and might thus appear as more
efficient than the Crank-Nicolson scheme. This advantage is lost when the scheme
is extended to cylindrical geometries. In this case, FFT must be replaced by Hankel
transforms. Although Fast Hankel Transform algorithms have been developed, these
are not so fast as FFTs and usually require a specific grid point distribution. These
constraints must be kept in mind in the design of efficient extensions of the above
schemes.
The reader is referred to section 4.1.1 for a practical example of implementation

of a scheme similar to that of table 4 but applied to pulse dispersion instead of dif-
fraction, and to the next section for an extension of this scheme in the presence of
nonlinearity.

Test of Diffraction. Any practical implementation of Eq. (124) must properly re-
produce existing analytical solutions. Equation (124) allows for simulations of the
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Table 4. Spectral Decomposition Algorithm.

– 1. definition of useful data, e.g., beam width w0, focusing length f , laser wavelength
λ0, index of refraction n0 and central wave number k0 = n02π/λ0.

– 2. definition of grids and z-invariant quantities for space marching the field over one
step Eq. (145).
– number of grid points Nx
– x-grid: xj = xmin + jΔx, for j = 0, · · · , Nx − 1
– kx-grid: kxj = jΔkx, for j = 0, · · · , Nx/2− 1; kxj = −π/Δx+(j−Nx/2)Δkx, for
j = Nx/2 · · ·Nx − 1 with Δkx = 2π/(NxΔx).

– precalculation of the vector Aj ≡ exp[−2iδ(kxjΔx)2] for j = 0, · · · , Nx − 1, with
δ ≡ Δz/4k0(Δx)2 and kxjΔx = 2πj/Nx for j = 0, · · · , Nx/2 − 1, kxjΔx =
2π(−1 + j/Nx) for j = Nx/2 · · ·Nx − 1.

– 3. definition of the initial field E0j = E(xj , z = 0), j = 0 . . . N⊥ + 1, and its spectrum
Ẽ0j = Ẽ(kxj , z = 0) = FFT (E0j ), j = 0 . . . N⊥ + 1.

– 4. space march the solution by performing a double-loop for Nz = M × Kmax
propagation steps, with expensive and costless diagnostics:

outer loop: k = 1, . . . ,Kmax
inner loop: m = 1, . . . ,M

n = (k − 1)M +m
Ẽn−1j = FFT (En−1j )

Ẽnj = Ẽ
n−1
j ×Aj for all j

Enj = FFT (Ẽ
n
j )

perform costless diagnostic n
end inner loop
perform expensive diagnostic k

end outer loop

propagation of Gaussian beams. The laws of Gaussian optics must therefore be re-
produced by a numerical simulation of Eq. (124). Using the input Gaussian beam
defined by Eq. (125), analytical formulas for Gaussian beam propagation read as:

E(r, z) = E0 w0
w(z)

exp

(
− r2

w2(z)
+ i
k0r

2

2R(z)
− iΨ(z)

)
, (147)

where the beam parameters evolution is defined as:

⎡
⎣w(z)R(z)

Ψ(z)

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎣

w0

[
(1− z

f
)2 + z2

z2R

]1/2

z − df + df (f−df )z−df

arctan
(

z−df
(fdf−d2f )1/2

)

⎤
⎥⎥⎥⎥⎥⎦
or

⎡
⎢⎣
w(z)

R(z)

Ψ(z)

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

wf

[
1 +

(z−df )2
z2f

]1/2

z − df + z2f
z−df

arctan
(
z−df
zf

)

⎤
⎥⎥⎥⎥⎥⎥⎦
(148)

where the first set in Eq. (148) involves only the input beam parameters and the
focal distance df = f/(1 + f

2/z2R), where zR = k0w
2
0/2 denotes the Rayleigh length

associated with the input beam width. The second set in Eq. (148) refers to the
standard laws for which the origin of coordinate along the propagation axis is the
waist position z = df . Other quantities are the beam waist wf = w0f/

√
f2 + z2R and

the Rayleigh length relative to the beam waist zf ≡ k0w2f/2. Both sets of equations
are identical as consistency is ensured by the relation df (f − df ) = z2f .
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3.1.2 Diffraction and nonlinear effects

Extended Crank-Nicolson scheme. The Crank-Nicolson scheme extends to prop-
agation equations of the NLS type such as Eq. (102) or Eq. (110). In this aim, we
will treat nonlinearity by the second order Adams-Bashforth scheme which is an ex-
plicit scheme working in general for all type of nonlinear terms. Thus, we define a
prototypical equation

∂E
∂z
=
i

2k0
Δ⊥E +N (E), (149)

where N (E) models the nonlinearity under investigation, e.g.N (E) ≡ iω0
c
n2IE for the

optical Kerr effect as in Eq. (102) or N (E) ≡ iω0
c
n2IE − βK

2 IK−1E for multiphoton
absorption and Kerr effect as in Eq. (110). The advantage of the Adams-Bashforth
scheme with respect to a completely implicit sheme lies in the fact that it preserves
the second-order accuracy of the Crank-Nicolson sheme and allows fast calculations
of the right hand side in Eq. (149). The implementation of a fully implicit scheme
with nonlinear terms would indeed require the resolution of nonlinear implicit equa-
tions, which cannot be done as easily as solving linear implicit equations. It usually
requires predictor-corrector routines and a large number of matrix inversions, thereby
increasing the computational cost.
The proposed alternative can be viewed as applying a second order Adams-

Bashforth time integrator to nonlinear term in the Crank-Nicolson scheme which
reads:

En+1j − Enj = iδ(ΔjEn+1j +ΔjE
n
j ) +

{
3

2
Nnj −

1

2
Nn−1j

}
, (150)

where

Nnj ≡ ΔzN (Enj ) = Δz
{
i
ω0

c
n2|Enj |2Enj −

βK

2
|Enj |2K−2Enj

}
. (151)

Note that the nonlinear terms on the rhs of Eq. (150) only involve previously obtained
fields Enj and E

n−1
j . The coefficients 3/2 and -1/2 ensure the second order accuracy.

A scheme where the nonlinear terms are simply written as Nnj on the rhs of Eq. (150)
would work as well, however, the second order accuracy of the Crank-Nicolson scheme
would be lost. Equation (150) is still an implicit equation but it allows us to express
the vector En+1j without more effort than in the absence of nonlinearities:

En+1j = (L−)−1
[
L+E

n
j +
3

2
Nnj −

1

2
Nn−1j

]
. (152)

Equation (152) extends Eq. (136) to the case of nonlinear propagation over a sin-
gle step and constitutes the core of the scheme, which must be repeated to cover
the entire propagation domain. The numerical scheme will therefore be similar to
the Crank-Nicolson scheme in table 3, with the following differences: It is no longer
necessary to compute and store the product L−1− L+ in the initialization step 2 since
each propagation step use independently L+ and L

−1
− , which should thus be stored

in different tables. Only the 4th step in the numerical scheme of table 3 must be
modified as indicated in table 5.
The overall stability of the scheme depends on the nonlinear terms, so that a

control of the step size Δz may be necessary in contrast to the unconditionally stable
Crank-Nicolson scheme of table 3; however, the stability constraint is often found to
be not so drastic as that for the description of diffraction with an explicit scheme
(Δz ≤ k0(Δr)2) [41], which justifies the explicit treatment of nonlinearities.
Split-step technique. Propagation equations and more generally PDEs including
several source terms as in Eq. (149) can be solved by an alternative scheme, the
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Table 5. Crank-Nicolson Algorithm with explicit nonlinearity treated by the second order
Adams-Bashforth scheme.

– 1. same as in table 3 and definition of data for nonlinearity, e.g., n2, βK .
– 2. definition of grids and matrix storage of L+ and L

−1
− : L± = 1± iδΔj as in table 3.

Introduction of boundary conditions in L+ and L−.
– 3. definition of the initial field E0j = E(rj , z = 0), j = 0 . . . N⊥ + 1.
– 4. double-loop for Nz = M ×Kmax propagation steps with two types of diagnostics
at each step and each M steps:

outer loop: k = 1, . . . ,Kmax
inner loop: m = 1, . . . ,M

n = (k − 1)M +m
calculate and store vector Nn−1j (loop j, · · · , N⊥)
calculate V n−1j = L+E

n−1
j (product matrix-vector)

add Sn−1j = V n−1j + (3Nn−1j −Nn−2j )/2 (sum of vectors)

Enj = L
−1
− S

n−1
j (product matrix-vector)

perform costless diagnostic n
end inner loop
perform expensive diagnostic k

end outer loop

split-step method, that we introduce in the following. The idea of the split-step tech-
nique is to perform a fractional step for each source term by means of a suitable
scheme that applies to each part. For example the propagation equation (149) takes
the form ∂zE = LE +N (E), where L ≡ (i/2k0)Δ⊥. Previously presented algorithms
allow us to treat each source term as in the set of equations:

∂zE = LE , (153)

∂zE = N (E). (154)

Equation (153) representing the linear part of Eq. (149) can be solved by e.g. the
Crank-Nicolson algorithm (Eq. (135) and table 3) or by means of the spectral decom-
position algorithm (Eq. (145) and table 4). Equation (154) representing the nonlinear
part of Eq. (149) can be solved by e.g. the second order Adams-Bashforth method
presented in previous section which reads:

En+1j = Enj +
3

2
Nnj −

1

2
Nn−1j . (155)

A split step scheme consists in sequentially propagating the envelope over a fractional-
step of size Δz by each of the algorithms used for Eqs. (153) and (154). Here,
fractional-step is not related to the step size but means that only part of source

terms are considered. By denoting E
n+1/2
j the discretized envelope after the first

split-step, we obtain the scheme

E
n+1/2
j = Enj +

3

2
Nnj −

1

2
Nn−1j , (156)

En+1j = (1− iδΔj)−1(1 + iδΔj)En+1/2j . (157)

Hence, for the split-step scheme applied to Eq. (149), stages 1 to 3 of table 5 are
identical with additional storage of matrix L = L−1− L+ as in table 3, whereas stage
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Table 6. Split-step algorithm with nonlinearity treated by the explicit second order Adams-
Bashforth scheme and linear term treated by the Crank-Nicolson scheme.

– 4- double-loop for Nz = M ×Kmax propagation steps with two types of diagnostics
at each step and each M steps:

outer loop: k = 1, . . . ,Kmax
inner loop: m = 1, . . . ,M

n = (k − 1)M +m
calculate and store vector Nn−1j = ΔzN (En−1j ) (loop j, · · · , N⊥)
first half-step:E

n−1/2
j = En−1j + (3Nn−1j −Nn−2j )/2

second half-step:Enj = LE
n−1/2
j (product matrix-vector)

perform costless diagnostic n
end inner loop
perform expensive diagnostic k

end outer loop

4 is modified as indicated in table 6. Note that the split-step scheme can be gener-
alized to more than two half-steps when there are more than two source terms. The
separation between linear and nonlinear effects is also convenient but not mandatory
to implement a split-step scheme.

3.1.3 Diffraction and Dispersion

In Sections 3.1.1 and 3.1.2, we have considered beam propagation with E = E(r, z)
depending on the transverse r and evolution z variables only. The methods we have
presented also apply to pulses with one or more additional dimensions. For example
with a temporal dimension E = E(r, t, z), the new coordinate is discretized as tl =
tmin+lΔt and pulse propagation is described by applying one of the presented schemes
to each time tl. This is achieved by including each propagation step of previous
schemes in a loop on the time index l. The discretized pulse envelope at a given
propagation distance zn must be defined over a two dimensional grid as E

n
j,l = E(r =

rj , t = tl, z = zn) for j = 0, · · · , N⊥ and l = 0, · · · , Nt. The input pulse, e.g., a
Gaussian pulse with spatial and temporal quadratic phases modeling lens-focusing
(focal length f) and chirp C can be defined as:

E(r, t, z = 0) = E0 exp
(
− r

2

w20
− ik0r

2

2f
− (1 + iC) t

2

t2p

)
, (158)

and its discretized counterpart as E0j,l = E(r = rj , t = tl, z = z0). As long as the prop-
agation equation does not involve differential operators with time derivatives, these
are the only additional features extending previous schemes from (1+1) to (2+1)
dimensions. However, higher dimensionality is usually associated with couplings be-
tween the different slices in the additional dimension. In the time direction, dispersive
effects plays this role. We will consider the lowest dispersive order, namely second or-
der dispersion to present a standard way to extend the Crank-Nicolson scheme to
(2+1)D simulations. We thus start from the diffraction-dispersion equation:

∂E
∂z
=
i

2k0
Δ⊥E − ik

(2)
0

2

∂2E
∂t2

(159)
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The split-step technique naturally applies to design an algorithm for Eq. (159) with
each fractional step relying on either a Crank-Nicolson algorithm, a Fourier decompo-
sition, or a combination of both. The efficient way to implement the first option leads
to the Alternate Direction Implicit scheme. The second option is straightforward and
the third will be presented in Sec. 3.1.4.

Gaussian optics for dispersion. Starting from a numerical code where diffraction
described by Eq. (124) was successfully implemented and checked with respect to
the laws of Gaussian optics, any implementation of dispersive terms as in Eq. (159)
requires new tests ensuring that (i) diffraction still works properly, (ii) dispersion is
correctly implemented and (iii) the combination of both effects is correct.

Test (i) can be easily performed by setting k
(2)
0 = 0 as an additional input con-

dition and checking again the laws for Gaussian optics. Similarly, test (ii) can be
performed by setting the diffraction coefficient to zero (parameter δ in the schemes)
and by comparing the results to the laws for Gaussian pulse optics. Using Eq. (158)
as an input condition, the law for Gaussian pulse propagation reads:

E(t, z) = E0 tp
T (z)

exp

(
− t2

T 2(z)

{
1 + i[C + (1 + C2)

z

zds
]

}
− iΦ(z)

)
, (160)

where the beam parameters evolution is defined as:

⎡
⎣T (z)
Φ(z)

⎤
⎦ =

⎡
⎢⎢⎢⎣
tp

[
(1 + C z

zds
)2 + z2

z2ds

]1/2

arctan
(
(1+C2)z+C

zds

)
⎤
⎥⎥⎥⎦ (161)

where zds = t
2
p/2k

(2)
0 denotes the dispersion length. For normal dispersion (k

(2)
0 > 0)

and a positive chirp coefficient, the pulse duration increases with distance whereas
for a negative chirp coefficient, the pulse duration first decreases until it reaches
Tm = tp/(1 + C

2) at distance zm = −Czds/(1 + C2), and then increases while the
Gaussian pulse shape is preserved. All these properties must be reproduced in a
correct implementation of dispersion.
Since the linear propagation of the pulse preserves the separation of time and

space variables, test (iii) consists again in comparing numerical results with the laws
for Gaussian optics for the beam and the pulse when both diffraction and dispersion
have non-zero coefficients.

Alternate direction implicit (ADI) scheme. The Alternate Direction Implicit
scheme is a split-step scheme comprising two half-steps of size Δz/2, each of which
treating both the transverse and the temporal dimensions but only one dimension
is treated implicitly during within the first half-step while the other is treated ex-
plicitly. Within the second half-step, dimensions are alternated with respect to their
implicit/explicit treatment [44]. Applying this technique to Eq. (159) leads to the
discretized equations:

E
n+1/2
j,l = Enj,l + iδΔ⊥E

n+1/2
j,l + idΔtE

n
j,l (162)

En+1j,l = E
n+1/2
j,l + iδΔ⊥E

n+1/2
j,l + idΔtE

n+1
j,l (163)

where
ΔtE

n
j,l ≡ Enj,l+1 − 2Enj,l + Enj,l−1 (164)

and

δ ≡ Δz

4k0(Δr)2
, d = −Δzk

(2)
0

4(Δt)2
. (165)
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The scheme described by Eqs. (162,163) is rewritten compactly using the tridiagonal
complex matrix

L±(δ) ≡ 1± iδΔ⊥, (166)

L±(d) ≡ 1± iδΔt, (167)

in the form
L−(δ)E

n+1/2
j,l = L+(d)E

n
j,l (168)

L−(d)En+1j,l = L+(δ)E
n+1/2
j,l (169)

or in a single step:

En+1j,l = L−(d)
−1[L+(δ)(L−(δ)−1{L+(d)Enj,l}T )]T , (170)

where superscript T denotes transposition and reflects the fact that L±(δ) and L±(d)
act on different dimensions of the envelope, i.e., L±(d) act on the temporal dimension
(columns of Enj,l) whereas L±(δ) act on the transverse dimension (rows of E

n
j,l). On

physical grounds in our case, it is equivalent to reverse the order in which different
dimensions are treated implicitly, hence a single step can also be written as:

En+1l,j = L−(δ)
−1[L+(d)(L−(d)−1{L+(δ)Enl,j}T )]T , (171)

where Enj,l = {Enl,j}T . Mathematically, the interchange is equivalent only if the ma-
trices commute.

3.1.4 Diffraction, dispersion and nonlinear effect – spectral extended
Crank-Nicolson scheme

This section presents an extension of the Crank-Nicolson scheme for (2+1)D simula-
tions of paraxial propagation equations presented in the theory section, namely those
which in the canonical form read as:

∂Ê
∂z
=

i

2K0(Ω)Δ⊥Ê + iD(Ω)Ê +
i

2K0(Ω)
ω2

c2
P̂
ε0
, (172)

where Ê = Ê(r,Ω, z), Ω = ω − ω0, K0(Ω) ≡ K(Ω,k⊥ = 0) denotes any of the K func-
tions listed in the Table 2, and the subscript zero in K0 will be omitted for simplicity.
The proposed extended Crank-Nicolson scheme is simply applied frequency compo-
nent by frequency component and therefore includes all effects that are naturally
included in frequency dependent terms of Eq. (172), namely dispersion, space-time
focusing and self-steepening.
The temporal coordinate is discretized with Nt equally spaced steps of size Δt:

tl = t0 + lΔt for l = 0 · · ·Nt − 1, we have a corresponding discretization of the
spectral domain ωl = ω0 + lΔω for l = 0 · · ·Nt/2 − 1, ωl = ω0 − π/Δt + lΔω for
l = Nt/2 · · ·Nt − 1, with Δω = 2π/[NtΔt]. The natural variable for the envelope
spectra is Ωl = ωl − ω0. Note that in this section, the index l will refer to either
discrete times or discrete frequencies, depending on whether the quantity we consider
belongs to the temporal or the spectral domain. For completeness, we reintroduce a
current in the nonlinear terms of Equation (172):

∂Ê
∂z
=

i

2K(Ω)Δ⊥Ê + iDÊ +
i

2K(Ω)
ω2

c2
P̂
ε0
− 1

2K(Ω)
ω

c

Ĵ
ε0c
. (173)
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Let Kl and Dl denote K(Ωl) and D(Ωl), respectively. The numerical scheme extending
Eq. (150) and corresponding to Eq. (173) reads:

Ên+1j,l − Ênj,l = iδl(ΔjÊn+1j,l +ΔjÊ
n
j,l) + idl(Ê

n+1
j,l + Ê

n
j,l) +

3

2
N̂nj,l −

1

2
N̂n−1j,l (174)

where

δl = δ
k0

Kl =
Δz

4(Δr)2Kl (175)

dl =
ΔzDl
2

(176)

N̂nj,l ≡
iΔz

2Kl
ω2l
c2
P̂nj,l
ε0
− Δz
2Kl
ωl

c

Ĵ nj,l
ε0c
. (177)

The solution to equation (174) represents one step along the propagation direction:

Ên+1j,l = (L−,l)
−1[L+,lÊnj,l +

3

2
N̂nj,l −

1

2
N̂n−1j,l ] (178)

where L−,l ≡ 1− idl− iδlΔj , L+,l ≡ 1+ idl+ iδlΔj . With respect to previous expres-
sions of L− and L+, the matrices L−,l and L+,l are different only by an additional
frequency dependent term, i.e., l-dependent, on the diagonal. As for L− and L+,
the matrices L−,l and L+,l operate on vectors representing transverse profiles (de-
scribed by index j) of the Fourier components Êj,l for the envelope, corresponding
to the fixed frequency Ωl; in other words, Eq. (178) allows us to apply the standard
Crank-Nicolson scheme to each frequency component l of the envelope spectrum, thus
performing one step from Enj,l at distance n to E

n+1
j,l at distance n+1. This step must

be inserted within a loop on frequencies (l).
Depending on the need to save either memory or simulation time, matrices L−,l

and L+,l may be either precomputed (to minimize simulation time, in which case the
additional amount of memory used corresponds to the size of a 14×N⊥ ×Nω table
of real numbers, seven diagonals of complex numbers being needed to describe L−,l
and L+,l) or recomputed at each step (to minimize memory usage). In the second
option, step 2 of the scheme is simplified since only a few frequency dependent tables
must be precomputed in order to reconstruct L−,l and L+,l in step 4 with a minimum
number of operations. The changes in steps 1 to 4 of the Crank-Nicolson scheme are
indicated in table 7.
Step 4 still constitutes the bulk of the scheme. It is evident that efficiency of

the code is enhanced if all unnecessarily repetitive calculations are avoided. These
concern loops including multiplications by factors which do not vary with the loop
index. For example it is clear that the quantities pl and ul in front of the nonlinear
polarization and current must be precalculated and stored in step 2 so that the cal-
culation of Nn−1j,l needs only two multiplications and an addition per element (j, l).
Constant factors can also usually be removed via renormalization of the discretized
equations. As a general rule, the efficiency of a code must be optimized by a careful
count of all operations appearing in nested loops and an attempt to minimize them.
For example, all matrix-vector operations performed on with tridiagonal matrices
must be implemented so as to avoid unnecessary multiplication and sum of zeros.
This can be achieved by using compact matrix storage for the non-zero diagonals
only, as discussed in [41].
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Table 7. Spectrally extended Crank-Nicolson algorithm.

– 1. definition of useful data: laser and medium parameter; in particular everything
needed to properly define the dispersion relation in the medium and nonlinearity,
e.g., Kerr parameters, ionization rates, etc.

– 2. definition of grids and z invariant quantities:
– r-grid: rj = jΔr, for j = 0, · · · , N⊥ + 1
– t-grid: tl = tmin + lΔt, for l = 0, · · · , Nt − 1
– ω-grid: ωl = ω0 + lΔω for l = 0, · · · , Nω/2− 1
ωl = ω0 − π/Δt + lΔω for l = Nω/2, · · ·Nω − 1, with Δω = 2π/[NωΔt] and
Nω = Nt

– calculation and storage of the one dimensional tables: Kl, Dl, dl, δl, pl ≡ iΔz
2Kl

ω2l
ε0c2
,

ul ≡ − Δz2Kl
ωl
ε0c2

– 3. definition of the initial field, E0j,l = E(rj , tl, z = 0) by e.g., Eq. (158) for Gaussian
profiles of the beam and pulse. Input spectral components by FFT: Ê0j,l = FFT (E

0
j,l)

– 4. double-loop on propagation steps with diagnostics each step and each M steps:

outer loop: k = 1, . . . ,Kmax
inner loop: m = 1, . . . ,M
n = (k − 1)M +m
calculate quantities for nonlinearity, e.g.:
electron density ρn−1j,l = ρ(rj , tl, zn−1) (solve ODE (118) for j = 1, · · · , N⊥)
Raman-Kerr term Qn−1j,l = Qi
(rj , tl, zn−1) (solve ODE (120) for j = 1, · · · , N⊥)

calculate and store Pn−1j,l , J
n−1
j,l (j = 1, · · · , N⊥; l = 0, · · · , Nω − 1)

{P̂n−1j,l , Ĵ
n−1
j,l } = FFT({Pn−1j,l , J

n−1
j,l }) (FFT) j = 1, · · · , N⊥

Ên−1j,l = FFT(E
n−1
j,l ) (FFT) j = 1, · · · , N⊥

calculate and store Nn−1j,l from

Eq. (177) (multiply plP̂
n−1
j,l , ulĴ

n−1
j,l and sum)

loop on frequencies
l = 0, · · · , Nω − 1
calculate L+,l, L−,l (tridiagonal complex matrices)
calculateL−1−,l (matrix inversion)

calculate V n−1j,l = L+,lÊ
n−1
j,l (product matrix-vector)

add Sn−1j,l = V
n−1
j,l + (3N̂n−1j,l

−N̂n−2j,l )/2 (sum of vectors)

Ênj,l = L
−1
−,lS

n−1
j,l (product matrix-vector)

end loop on frequencies (l)

inverse Fourier transform Ênj,l → Enj,l (FFT−1) j = 1, · · · , N⊥
store Enj,l
perform costless diagnostic n

end inner loop (m)
perform expensive diagnostic k

end outer loop (k)

3.2 Numerical Methods for UPPE Solution

Having formulated our pulse propagation models in Sec. 2, we have seen a number
of numerical simulation techniques valid for paraxial equations and we now address
the question of how to solve non-paraxial equations numerically. To keep the notation
simple, and equations readable, we will restrict ourselves to carrier-resolving equations
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in the form of the simplest version of UPPE, namely a one-component propagation
equation in a bulk medium. We also suppose that all nonlinear interactions are ex-
pressed in the nonlinear polarization P and for simplicity omit from our equations
the current density term. Note that the numerical approach described next translates
directly to a general vectorial case, and its practical implementation in software is
essentially the same.

3.2.1 UPPE as a large system of ordinary differential equations

We have written the UPPE equation in a form which resembles the usual structure
of pulse propagation equations and to which simulation practitioners in the field are
most used to. The UPPE expresses evolution of the spectral (both temporal and
spatial) transform of the electric field, and its right-hand-side contains linear and
nonlinear terms:

∂zEkx,ky (ω, z) = ikzEkx,ky (ω, z)+
iω2

2ε0c2kz
Pkx,ky (ω, z) where kz =

√
k2(ω)− k2x −k2y.

(179)
Let us point out a few important points before going into details of a solver implemen-
tation. First, unlike many propagation models, this is in a spectral representation. It
describes evolution of a Fourier spectrum, rather than that of a real physical field.
One important consequence is that what we have is not a partial differential equa-
tion anymore. Rather, it is a system of ordinary differential equations for spectral
amplitudes, albeit a very large system. Thus, there are no partial derivatives to ap-
proximate, which makes numerical solution conceptually very simple: One can utilize
any available library for ODE systems, and the only remaining thing to do is to define
a right-hand-side calculation subroutine which will be fed to the chosen ODE solver.
Second, the above representation, which is in terms of spectral amplitudes for elec-

tric field, is not exactly the one a numerical solver should work with. This is because
the slowest-evolving variables in this problem only change in response to nonlinearity,
and these are actually the native variables Akx,ky which appeared in the course of
UPPE derivation:

Ekx,ky (ω, z) = Akx,ky (ω, z) exp [ikzz] ≡ Akx,ky (ω, z) exp [i
√
k2(ω)− k2x − k2yz].

(180)
Their evolution equation (see Section 2.3) only contains nonlinear terms:

∂zAkx,ky (ω, z) = +
iω2

2ε0c2kz
e−ikzzPkx,ky (ω, z) with kz =

√
k2(ω)− k2x − k2y. (181)

It is obvious that spectral amplitudes A are the slowest variable in the pulse evolution
problem, because they do not change at all in a linear regime. This also means that
UPPE equations exactly solve the linear part of a problem, which is an extremely
desirable property (reader is encouraged to review various propagation equations
specifically to recall how much effort often goes even into design of the linear part of all
these equations ). The most important advantage is the ability to model an arbitrary
medium with frequency dependent index of refraction and frequency dependent losses.
Alternatively, one can view Eq. (181) as Eq. (179) to which integrating factor

exp [ikzz] has been applied. This cancels oscillations in the spectral amplitudes of the
electric field which are due to linear propagation. Nonlinearity alone contributes to
the evolution of the native UPPE variables Akx,ky , and implementation based on them
thus yields to faster numerical integration. This point of view makes it evident that
there is a degree of freedom in the relation between E and A amplitudes. Namely, one
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could also use an integrating factor exp [ikz(z − z0)], thus moving the point at which
A = E from z = 0 to z0. Lacking a better term, we say that E and A amplitudes are
aligned at z0.
It is imperative that a simulator utilizes this degree of freedom. At z = z0 spectral

amplitudes of E and native variables A coincide, but as z increases, E and A diverge
from each other. Although always connected by a simple complex phase change Δφ =
kz(ω, kx, ky)(z− z0), one must realize that the latter can attain very large values. To
avoid numerical difficulties in handling the corresponding exponentials, the relation
between E and A has to be re-aligned after every integration step by moving z0 to
the current propagation distance. After the new array of A is produced in the ODE
solver taking a step Δz, re-alignment with E is achieved by

Anewkx,ky (ω,Δz) = exp [ikz(ω, kx, ky)Δz]A
old
kx,ky

(ω,Δz). (182)

After this operation, E and A amplitudes coincide once again when the next integra-
tion step is to be executed. Note that the above procedure corresponds to nothing
but to the free, linear propagation of the field, and re-alignment therefore amounts
to applying a linear propagator. In what follows it is assumed that amplitudes are
aligned before each step, which means that z = 0 in Eq. (181) should be understood
as a beginning of the current ODE solver step. It also means that all z values are
small, restricted to z < Δz.
Equation (181) is not completely explicit, because it hides the fact that the non-

linear polarization P must be calculated from the current value of the electric field.
Indeed, polarization is a functional of E(x, y, t, z) taken at a fixed z value. As a rule,
medium models are formulated in real space. For example Raman-effect contribution
to the change of refractive index can be expressed as convolution (in time) calculated
at a given spatial point (x, y, z) ≡ (r, z). While the concrete relation between electric
and polarization fields is unimportant for how the UPPE solver is designed, the fact
that medium response is calculated in real space is crucial. We will therefore assume
that a function implementation P (x, y, t, z) = PNL({E(x, y, t, z)}) is given, and that
it calculates nonlinear polarization as a function of time from a history of the electric
field at a fixed spatial point.
Let us incorporate this into our notation and write down an explicit definition of

the UPPE ODE system. The unknown functions are Akx,ky (ω, z) and they obey

∂zAkx,ky (ω, z) = +
iω2

2ε0c2kz
e−ikzzPkx,ky (ω, z, {E(x, y, z, t)}), kz =

√
k2(ω)− k2x − k2y

(183)
where

Pkx,ky (ω, z, {E(x, y, t)}) = (2π)−3/2
∫
e+iωt−ikxx−ikyyPNL({E(x, y, t, z)}) dt dx dy

(184)
is a Fourier (or in general spectral) transform of PNL({E(x, y, t, z)}) which in turn
encapsulates nonlinear medium properties. (Note that a solver implementation does
not need to, and in fact should not know about its concrete functional form!) To
evaluate the above, one first needs to calculate the real-space field from the native
computational variables through another (inverse) Fourier transform

E(x, y, t, z) = (2π)−3/2
∫
e−iωt+ikxx+ikyyAkx,ky (ω, z)e

ikzz dω dkx dky. (185)

Now it should be clear that when an ODE solver requests evaluation of its right-
hand-side function for a given value of z, and for a given array Akx,ky (ω, z), spectral
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transforms will be invoked in both directions. One can view this as a price to pay for
the elimination of partial derivatives from propagation equations, and for the ability
to solve the linear problem exactly.
There is one more issue to clarify before transition to discretization, and that is

that of a moving frame. It is of course advantageous, and in fact necessary, to follow
pulse evolution in a frame of reference which moves with a velocity vf (with respect
to the laboratory frame) chosen such that at each location z in a lab, the pulse arrives
at t ≈ 0, and thus stays located around the center of the temporal computational
domain. This is achieved by expressing time t through t = τ + z/vf where τ is our
new temporal variable. Inspection of Eqs. (183-185) reveals that this amounts to a
simple modification of the linear propagator:

exp [ikz(ω, kx, ky)Δz]→ exp [ikz(ω, kx, ky)Δz −Δzω/vf ]. (186)

We emphasize that vf is an arbitrary parameter which does not reflect any physics
of the model. It is merely an expression of what one deems to be the best reference
frame. Quite often it is reasonable to choose

1

vf
=
1

vg
=
∂kz(ωpulse, kx = 0, ky = 0)

∂ω
(187)

which means that the computational frame of reference moves with the group velocity
of the pulse. Readers familiar with Nonlinear Schrödinger Equation should realize that
it is exactly the choice that makes a pulse described by NLS to stay localized in the
vicinity of τ ≈ 0.

3.2.2 Discretization and spectral transforms

Because any UPPE solver is spectral in all dimensions, grid representation of both,
real-space and spectral space fields is determined by properties of discrete spectral
transforms. Depending on the symmetry of the problem, these are either variants of
Fourier or discrete Hankel transforms.

Spatial (linear) axis
For a spatial dimension, say x, that spans one side of a computational domain

box, the values of coordinates (in real space) and transverse wave numbers kx (in
spectral space) are those of ordinary Fourier transform sampling points. Both sets
are equidistant and equal in size.

Temporal axis
A computational domain axis in time direction has its corresponding Fourier trans-

form which is slightly modified due to the fact that physical fields are real-valued.
It is sufficient to sample spectral amplitudes Akx,ky (ω) only for positive angular fre-
quencies ω. Moreover, one can restrict discrete sampling points to ω ∈ (ωmin, ωmax) if
one only knows the medium susceptibility χ(1)(ω) in this interval. Only these discrete
frequencies become active in the simulations in the sense that they carry correspond-
ing spectral amplitudes. When spectral-to-real transform is invoked, the active set of
frequency-samples is padded by zeros before a standard Fourier transform is executed.
This has the effect that the resulting real-space amplitude becomes the so-called an-
alytic signal. While its real part corresponds to physical electric field, its modulus
squared can be interpreted (in suitable units) as the time-averaged light intensity.
Both quantities are often needed in the calculation of various nonlinear medium re-
sponses. Note that in this arrangement the total number of discrete samples in the
time dimension is more than twice the number of active samples in the frequency



54 The European Physical Journal Special Topics

dimensions. However, the number of ODEs to solve is given by the active frequency
samples.

Radial axis
For problems with axial symmetry, it is advantageous to utilize the radial discrete

Hankel transform instead of a two-dimensional Fourier transform. Because the dis-
crete Hankel transform is represented by a full matrix, it is not fast in the sense fast
Fourier transforms are. Still, the main computational savings are related to the re-
duced dimensionality of variable-arrays representing physical fields. Sampling points
in both real and spectral space are the same and namely given by scaled zeros of
Bessel function J0. For example N samples in real space are ri = ui/uNR where
J0(ui) = 0. Note that there is no radial sample located directly on the axis.
Readers concerned about the usage of slow spectral transform, should note that

there are fast discrete Hankel transforms. However, UPPE solver requires a truly
orthogonal transform implementation, because forward and inverse transformations
are executed many times over the same array. Only the proper Hankel transform is
orthogonal (and in addition equal to its own inverse) and should be preferred on
grounds of numerical accuracy.

3.2.3 Integration of evolution equations for spectral amplitudes

The core of a UPPE solver can be based on essentially arbitrary ODE-solver library.
A good library should have the capability to choose between different algorithms, and
it will also take care of allocating auxiliary arrays based on the selected method. The
advantage of using a canned library over hard-coding a concrete algorithm into the
solver implementation is the flexibility in the choice of method, and also the fact that
everything concerning auxiliary variables involved in ODE solution remains hidden.
However, the UPPE system can contain several million variables, and that an ODE
solver will, depending on the requested method, allocate several auxiliary arrays of
the same size. As a consequence, the bulk of the memory allocated for the whole
simulation will actually be requested by the solver. Not only the memory needs will
be several times larger than those for one copy of all fields, but also that the method
performance can be affected by the size of the system solved. In practice simpler
methods tend to perform better than the more sophisticated ones. In particular,
all methods that require calculation of a Jacobian are utterly unsuitable for UPPE
solution. Fortunately, the standard ODE solver work-horses such as various Runge-
Kutta methods work well.
Now, suppose we have calculated an array Akx,ky (ω, z) representing the solution at

propagation distance z. To keep the notation simple, discrete wave numbers kx, ky and
active angular frequencies ω now represent array indices. To calculate Akx,ky (ω, z +
Δz), an ODE solver is invoked to produce it. Because we synchronize A and E
representations after each step, we can understand z = 0 as if the currently executed
step was the very first one. A pseudo-code for the integration loop reads:

Repeat for each step:
A) Invoke ODE Solver:

Akx,ky (ω, 0)→ Akx,ky (ω,Δz)
B) Re-align native and field variables:

Akx,ky (ω,Δz) = exp [i(kz(ω, kx, ky)− ω/vf )Δz]Akx,ky (ω,Δz)
Readers may note that the above integration may seem like an operator splitting

method. It does looks as if nonlinear and linear propagators were applied in turns the
same way as in the split-step approach. However, this is where the similarity ends.
The second sub-step is nothing but a shift of our reference frame. If our numerics
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did not suffer from rounding, and could evaluate exponentials with arbitrarily large
arguments, this addition would not be necessary.
Behind the scenes, while executing A), ODE solver will invoke calculation of the

right-hand-side of our ODE system, i.e. it asks to evaluate

iω2

2ε0c2kz
e−i(kz−ω/vf )ΔzPkx,ky (ω, z, {E(x, y,Δz, t)})

for given spectral amplitudes Akx,ky (ω). Depending on the ODE algorithm, call of
this function occurs several times during a single integration step, each time with
a different value of Δz. UPPE solver implements the function call in the following
steps:

1. Apply linear propagator to shift from z = 0 to Δz:

Akx,ky (ω) �→ Akx,ky (ω) exp [+i(kz(ω, kx, ky)− ω/vf )Δz]
2. Perform the spectral transform from spectral to real space:

E(x, y, t) = FFT{Akx,ky (ω)}
3. In real-space representation, calculate nonlinear medium response for a given field
E(x, y, t), using a user-supplied medium-response implementing algorithm PNL:

P (x, y, t) = PNL{E(x, y, t)}
4. Perform spectral transform from the real to spectral space:

Pkx,ky (ω) = FFT
−1{P (x, y, t)}

5. Apply linear propagator to undo the previous shift in z:

Pkx,ky (ω) �→ Pkx,ky (ω) exp [−i(kz(ω, kx, ky)− ω/vf )Δz]
6. Finally, multiply by the coupling factor and return result to the ODE solver:

Pkx,ky (ω) �→
iω2

2ε0c2kz
Pkx,ky (ω).

The above is the most computation-intensive part of UPPE solution and thus merits
attention with respect to efficient parallel implementation.

3.2.4 Parallelization

Even if a problem has axial symmetry, a typical UPPE ODE system contains several
million variables. It is therefore more or less necessary that computations are par-
allelized. Let us briefly point out facts that may influence our parallelization design
decisions.
First, we have to take into account the fact that the UPPE framework is inherently

spectral. This means that each processor or a thread of execution will, at some point,
require access to distant locations in allocated arrays. The shared memory paradigm
is therefore a natural way to go, and the current UPPEcore implementation uses
Pthreads. OpenMP (i.e. pragma based loop parallelization) would probably work
equally well for our purposes.
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Second, one has to decide which parts of the code will actually execute in parallel.
Of course, ideally all of them, but the question is if it is worth of the trouble. It turns
out that most of the computational effort in UPPE is spent within the ODE system
right-hand-side calculations and in performing spectral transforms. This invites a
parallel work crew strategy: A master thread creates a family of workers or slaves
and dispatches these to perform work as needed. The master thread executes all work
outside of the ODE solver loop which includes all initialization, analysis or diagnostics
of results, input, and output. Master also runs the main ODE loop without help from
its slaves. (This is of course a compromise between the achievable parallelization
efficiency and complexity of the solution!) This means that almost any serial ODE
solver library can be used as a plug-in for the UPPE solver.
The parallel working crew enters a synchronization barrier immediately after their

creation. Here, they wait for commands from their master who specifies which is the
next function to execute in parallel. For example, this may be a spectral transform.
Within the parallel section, each of the workers takes over a proportional part of the
load. When the parallel section is done, workers meet again at the synchronization
barrier, awaiting further commands from the master.
Obviously the biggest drawback of this design is that the ODE part of the code

remains serial. Although it is relatively small, it would limit possible parallel speed
up with a large number of threads. An alternative solution is akin to the domain
decomposition strategy; the set of ODE equations is evenly distributed between mul-
tiple instances of ODE solvers, each executed by an independent thread. However,
this solution requires a mild modification of the ODE routines that control adaptive
integration step. Some earlier versions of the UPPEcore were based on this approach.
Since the performance penalty with the working crew method is mostly negligible in
practice, it is preferred because it does not require open access to the code of the
ODE solver.

3.3 Numerical methods for nonlinear medium response models

This section is devoted to the numerical implementation of nonlinear response models
by using a method similar to the so-called exponential time differencing method [45].

3.3.1 Numerical implementation of plasma related terms

A formal solution to Eq. (114) may be written as:

J(r, t, z) =
q2e
me

∫ t
−∞
exp

(
− t− t

′

τc

)
ρ(r, t′, z)E(r, t′, z) dt′. (188)

From the knowledge of the field and electron density for all grid points, it is therefore
possible to determine the current step by step by expressing for each fixed spatial
position (r, z) the current at time t + Δt as a function of the current at previous
time t:

J(r, t+Δt, z) =
q2e
me

∫ t+Δt
−∞

e−(t+Δt−t
′)/τcρ(r, t′, z)E(r, t′, z) dt′. (189)

Omitting the (r, z) dependence for simplicity, we obtain:

J(t+Δt) =
q2e
me
e−Δt/τc

{∫ t
−∞
e−(t−t

′)/τcρ′E′ dt′ +
∫ t+Δt
t

e−(t−t
′)/τcρ′E′ dt′

}
(190)
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Table 8. Coefficients for modeling plasma current or electron density in Eq. (195).

A(t) Q(t) a η

J(t) ρ(t)E(t) e−Δt/τc Δt
2

q2e
me

ρ(t) Wofi[I(t)] e−
∫ t+Δt
t [W ′

ofi−W ′
ava] dt

′ Δt
2
ρnt

where ρ′E′ ≡ ρ(r, t′, z)E(r, t′, z). This is rewritten by using a trapezoidal integration
rule for the second term on the right hand side:

J(t+Δt) = e−Δt/τc
{
J(t) +

Δt

2

q2e
me
ρ(t)E(t)

}
+
q2eΔt

2me
ρ(t+Δt)E(t+Δt). (191)

Similarly, a formal solution to Eq. (118) reads:

ρ(t) = ρnt

∫ t
−∞
exp

(
−
∫ t
t′
[W ′′ofi −W ′′ava] dt′′

)
W ′ofi dt

′ (192)

where e.g. W ′ofi ≡ Wofi[I(t′)]. Eq. (192) is similar to Eq. (188) , thus its solution is
similar to Eq. (191) and reads:

ρ(t+Δt) = e−
∫
t+Δt
t

[W ′
ofi−W ′

ava] dt
′
{
ρ(t) +

Δt

2
ρntWofi[I(t)]

}
+
ρntΔt

2
Wofi[I(t+Δt)].

(193)
The solutions (193) and (191) take the generic form:

A(t+Δt) = a[A(t) + ηQ(t)] + ηQ(t+Δt), (194)

where a and η are step-dependent constants and Q(t) is a known function over the
whole integration domain. With the (a,η) couples indicated in table 8, the discretized
version of Eq. (194) which read as

Al+1 = a[Al + ηQl] + ηQl+1, (195)

allows for the determination of the electron density and current densities over the
entire time window by a loop over the time index l.

3.3.2 Numerical implementation of the Raman-Kerr response

The inclusion in the numerical scheme of the Raman-Kerr contribution is formally
equivalent to that of the plasma. We indicate two possibilities to achieve this task.

– 1. Resolution of an ordinary differential equation: Assuming that the envelope
E(r, t, z) is known at a given propagation distance z, both the electron den-
sity ρ(r, t, z) and the Raman-Kerr contribution Qi(r, t, z) =

∫ t
−∞R0 exp[−Γ(t −

τ)] sin[ωR(t− τ)]|E(r, τ, z)|2dτ are solutions to a non-homogeneous ODE that in-
volves E(r, t, z) as a source term. The temporal profiles ρ(r, t, z) and Qi(r, t, z) are
indeed obtained for each fixed spatial coordinate (r, z) by solving Eq. (118) for ρ
with boundary condition ρ(−∞) = ρ0 � ρnt and Eq. (120):
These tasks can be done by any ODE solver based on, e.g., the Runge-Kutta

scheme.
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– 2. Direct resolution. An explicit formulation satisfying Eq. (120) exists for the
Raman-Kerr response (the electron density, solution to Eq. (118) admits a similar
and simpler explicit formulation):

Qi(r, t, z) =

∫ t
−∞
R0 exp[−Γ(t− τ)] sin[ωR(t− τ)]|E(r, τ, z)|2dτ (196)

which can be rewritten as the imaginary part of

Q(r, t, z) = R0
{
e−Γt+iωRt

∫ t
−∞
eΓτ−iωRτ |E(r, τ, z)|2dτ

}
. (197)

A numerical scheme to compute Eq. (197) is obtained by using a trapezoidal
evaluation of the integral term:

Q(r, t+Δt, z) = e(−Γ+iωR)ΔtQ(r, t, z)

+R0Δt
2

[
|E(r, t+Δt, z)|2 + e(−Γ+iωR)Δt|E(r, t, z)|2

]
. (198)

Discretization of this scheme leads to an expression allowing the calculation of the
temporal profiles for the complex Raman-Kerr response Q(r, t, z) at each fixed
spatial position (r, z).

Qnj,l+1 =

{
e(−Γ+iωR)ΔtQnj,l +R0

Δt

2
[|Enj,l+1|2 + e(−Γ+iωR)Δt|Enj,l|2]

}
(199)

from which Qi(r, t, z) ≡ Im(Qnj,l) is obtained. Scheme (199) must be inserted
within an outer loop on j (transverse coordinate) and an inner loop on l (time).

4 Worked out modeling examples

This section presents selected worked-out simulation examples designed for teach-
ing purposes during the Stella-School 2011 [9]. The examples illustrate mini-projects
spanning the build-up of a simulation engine, the assessment of its numerical correct-
ness as well as the set-up and execution of numerical experiments on ultrashort laser
pulse propagation, from the very basics up to a full-blown simulation project.
The following examples consists of two subsections relying on the complementary

approaches presented in sections 2 and 3. In the first part, authors aim to address the
needs of readers who would like to hone their simulation-code building skills. Useful
hints are summarized for implementing numerical schemes presented in section 3 and
tested step by step. Linear propagation of a chirped pulse in a dispersive media is
used as a specific example to illustrate the main principles of the suggested bottom-
up approach for a step by step code implementation and testing. In this subsection,
we then continue with the presentation of new numerical results for the nonlinear
propagation, filamentation and pulse-splitting of a chirped pulse in water.
In the second subsection, we want to approach readers who want to jump right into

the numerical experiments. We envision that experimentalists may be interested in
using simulators in this way, i.e., as a vehicle for a numerical experiment. A simulation
engine was used to design and perform a pump-probe numerical experiment, the aim
of which is to infer the nature of nonlinearity that occur within an optical filament.



STELLA 59

Fig. 2. Relative error ΔTm/Tm as a function of parameters of the numerical scheme. The
three curves refer to different numbers of grid points in the temporal dimension: circles:
Nt = 2

8, squares: Nt = 2
9, cross: Nt = 2

10. The temporal step-size Δt is fixed by the choice
of the box-size Δt = T/(Nt− 1). The step-size along the z-direction is (a),(b) Δz = 300μm,
and (c),(d) Δz = 30μm. The dashed line indicates a predefined tolerance value.

4.1 Simulation project example using Nonlinear Envelope Equations

4.1.1 Linear propagation of chirped pulses in water

We implemented model Eq. (159) in order to numerically simulate the linear prop-
agation of a chirped pulse undergoing the effects of diffraction and dispersion. The
input pulse is a Gaussian pulse with central wavelength λ0 = 800 nm, pulse duration
τFWHM = 100 fs, beam width w0 = 100μm, temporal quadratic phase with a chirp
coefficient C = −10 as defined by Eq. (158). The medium is water with the GVD
coefficient k

(2)
0 = 241 fs2/cm. We applied the scheme described in section 3.1.3, i.e.

a split-step scheme relying on a Fourier transform to treat dispersion in the spectral
domain and a Crank-Nicolson algorithm described in table 3 to treat the diffraction
term.
First we investigated the effects of finite box- and step-sizes. We monitored the

numerically simulated minimal pulse duration T
(num)
m , maximum intensity and its

position in local time. We then calculated relative errors associated with these quan-
tities when Δz, the step size along the propagation direction, Nt, the number of grid
points and T , the temporal box-size are varied. Figure 2 shows the relative error for

the minimal duration ΔTm/Tm ≡ (T (num)m /Tm)−1 as a function of various numerical
parameters, where Tm ≡ τFWHM/

√
1 + C2 denotes the minimum pulse duration ac-

cording to the laws for Gaussian optics (see Sec. 3.1.3). Each subfigure shows curves
referring to different number of grid points Nt in the temporal dimension. Figures
2(a) 2(b) were obtained with Nz = 100 propagation steps (step size Δz = 300μm),
whereas figures 2(c) 2(d) were obtained for Nz = 1000 steps (Δz = 30μm). Com-
parison of these figures shows that the error is smaller for a smaller step size. We
performed all calculations with the same value of T and Nt but increased Nz up to
4000 and we did not observe any change in the value of ΔTm/Tm with respect to the
case Nz=1000. This indicates that Nz = 1000 points are sufficient to accurately model
dispersion with our input parameters. Figures 2(b) and 2(d) exhibit a higher error for
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small box sizes indicating finite box effects. This effect corresponds to small temporal
steps in figures 2(a) and 2(c). For large step- or box-sizes each figure exhibits an
increase of the relative error due to a too coarse resolution. All curves exhibit a min-
imum error indicating the best box size or temporal resolution that can be achieved
with a given number of grid points. A peculiar feature is observed in Figs. 2(c) and
2(d) where the relative error changes sign in a certain range of box sizes (Δt ≈ 2.5 fs,
T ≈ 640 fs; negative values are not shown in Fig. 2 due to the logarithmic scale).
This feature is an effect of the coarse resolution and does not correspond to a true
minimum of the relative error.
If we define a tolerance value of, e.g. 10−2, for the relative error ΔTm/Tm, the

intersection of the dashed line and a curve for a given number of points in Fig. 2(c)
and 2(d) indicates the range of box or step sizes that can be used without exceeding
the predefined tolerance.

4.1.2 Nonlinear propagation of chirped pulses in water

Marburger’s formula (104) is known to reproduce well the power threshold for
catastrophic behavior and position of the collapse when a non-chirped powerful pulse
propagates in a pure Kerr medium. The goal of this section is twofold:

– First it constitutes an example of implementation of one of the most general
numerical schemes designed for simulations of Nonlinear Envelope Equations.

– Second, we present the results of numerical experiments with intense chirped
pulses undergoing filamentation in a dispersive medium and we compare them
with known results for pulse collapse. The filamentation threshold for non-chirped
pulses is known to exceed Pcr and lead to pulse-splitting [30,46]. By monitoring
the position of the nonlinear focus and the chirped pulse-splitting dynamics, we
extended Marburger’s formulation coupled with the so-called moving focus pic-
ture [47–50] to fit our numerical results for the splitting velocity. This extends the
moving-focus model to media where intense laser pulses also undergo nonlinear
losses and dispersion.

Numerical experiments on nonlinear propagation in water were performed by extend-
ing the code designed in section 4.1.1 so as to simulate the NLS-like propagation
equation

∂E
∂z
=
i

2k0
Δ⊥E − ik

′′
0

2

∂E
∂t2
+ i
ω0

c
n2IE − βK

2
IK−1E , (200)

where I denotes the pulse intensity. Equation (200) includes a limited number of
physical effects, namely diffraction, second order group velocity dispersion, optical
Kerr effects and multiphoton absorption. However, it is used as a simplified proto-
typical model for nonlinear pulse propagation, allowing for an implementation of the
extended Crank-Nicolson scheme as described in Sec. 3.1.2. As a follow-up to previous
section, a split step scheme was used, treating dispersion in the Fourier domain for
the first half-step, and other effects in the temporal domain for the second half-step.
The simulation of Eq. (200) aims at interpreting the pulse splitting phenomenon, a
standard effect in the physics of femtosecond filamentation [51,52], in the framework
of the moving focus model. Strictly speaking, the moving focus model does not ac-
curately reproduce filamentation physics in dispersive media [53] but we will show
that relaxing its underlying assumptions allows for the derivation of scaling laws that
predict rather accurately the pulse-splitting velocities obtained by simulations of the
propagation of chirped intense pulses described by Eq. (200).

Moving focus model. The moving focus model consists of a slice by slice pulse self-
focusing in the sense that the pulse is viewed as a collection of independent thin time
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Fig. 3. Prediction of the moving focus model for the nonlinear beam-foci associated with
given power for each time slice within the pulse. The time slice with peak power P0 collapses
at the shortest distance from the laser. Time slices with smaller power P±1 collapse farther
on the propagation axis while the central time slices undergo nonlinear absorption. The
simultaneous collapse of two time slices P−1 and P

+
1 on the ascending and descending edges

of the pulse lead to pulse splitting.

slices undergoing self-focusing [50,54]. This assumption is valid when the physical
effects coupling the various time slices together can be neglected. Each time slice
contains a given power. In an ideal Kerr medium, all central slices with power above
critical would collapse at distances that become larger as the corresponding power
is closer to Pcr. The slices with power below Pcr diffract. In a real medium, several
physical effects can arrest collapse, e.g., nonlinear losses reduce power of collapsing
time slices once intensity exceeds a certain threshold. In this process, an intensity
maximum (nonlinear focus) is reached and the propagation continues. The nonlinear
foci corresponding to the different temporal slices of the pulse with power above
critical do not appear simultaneously in the laboratory frame, and can be viewed as a
moving focus. Figure 3 shows the locations of the nonlinear foci corresponding to the
peak power P0 of the pulse, and those corresponding to a smaller power P

−
1 in the

leading or P+1 in the trailing part of the pulse. In a pure Kerr medium, these beam
collapse positions are predicted by the Marburger formula (104) [29]. In the presence
of nonlinear losses, the slices with larger power collapse faster and lose at least part of
their power, thereby leading to the occurrence of pulse splitting beyond the nonlinear
focus. It manifests itself in the form of two intensity peaks departing from each other,
each corresponding to the nonlinear focus of a given time slice [55]. In a dispersive
medium, the assumption of independent time slices no longer holds, however, we still
expect the moving focus model to accurately predict the positions of nonlinear foci
and pulse splitting over distances shorter than the typical dispersive length. When
the distance to the nonlinear focus and the dispersive length have the same order of
magnitude, we will show that the moving focus picture and Marburger’s formulation
for beam collapse can be extended so as to fit the splitting velocities obtained from
simulation results.

Numerical simulations of pulse splitting. The collimated input pulse has
Gaussian intensity distribution in both space and time (see Eq. (158)), with pulse
duration of 50 fs at full width at half maximum (FWHM), beam width w0 = 100μm,
wavelength 800 nm. Medium parameters correspond to water: refractive index n0 =
1.328, nonlinear refractive index coefficient n2 = 1.6 × 10−16 cm2/W, dispersion
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Fig. 4. Pulse intensity profile as a function of propagation distance. The input pulse power
is P0 = 10Pcr, and the input chirp is C = −1. The colorbar shows intensity in W/cm2.
The white dashed curve represents the best fit, by using the modified Marburger law, of the
peak positions of each sub-pulse resulting from pulse splitting beyond the nonlinear focus.
A second nonlinear focus followed by another pulse splitting phenomenon can be observed
about 1 cm beyond the main collapse.

coefficient k
(2)
0 = 241 fs2/cm, cross-section for fifth-order multi-photon absorption

β5 = 8× 10−50 cm7/W4 [51,52]. We investigated the effects of input peak power and
initial pulse chirp. The input power varied from 1.5 Pcr to 50 Pcr and the pulse chirp
parameter from −10 to 10. Simulations were performed by setting the time window to
T = 400 fs with Nt = 2

8 sampling points, and the propagation distance was divided
into Nz = 1000 steps. These parameters closely correspond to those determined in
section 4.1.1 to achieve the minimal relative error (See Fig. 2). To optimally use the
computing time at a given resolution, the propagation length was adjusted from 1 to
3 cm so as to exceed 2.5 times the position of nonlinear focus roughly estimated with
the original Marburger law.
Fig. 4 shows the evolution of the intensity profile of the pulse along the propagation

distance for an input pulse power of 10 Pcr and chirp C = −1. Around z = 0.8 cm, the
intensity starts to increase, and beyond the nonlinear focus at z ∼ 0.9 cm a splitting
event is observed with the formation of two sub-pulses in the leading and trailing
edges of the input pulse. Fig. 4 shows peak intensities of the leading and trailing
pulses. The velocity of a given peak is given by vp = (v

−1
g + (dt/dz))

−1, where vg
denotes the moving frame or pulse group velocity and dt/dz, the inverse of the peak
velocity in the local frame. The latter quantity is obtained from the slope of the curve
in Fig. 4 representing the temporal position of the peak intensity in the pulse frame
as a function of propagation distance.

Modified Marburger’s law. We expect that Marburger’s law (104), originally de-
rived for the continuous wave regime from a fit of numerical simulation results, re-
quires modifications to match the collapse position of chirped pulses. We will therefore
fit our numerical results for the nonlinear foci by assuming a slice by slice self-focusing
following a modified Marburger’s law:

zc(t) = Δzc +
bMzR√

[(Pin(t)/Pcr)1/2 − aM ]2 − (1− aM )2
(201)

Pin(t) = P0 exp(−2t2/r2t2p) (202)
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where aM , bM , Δzc and r are free parameters to be determined by fitting numerical
results. The original Marburger law (104) for slice-by-slice self-focusing is recovered
for aM = 0.852, bM = 0.367 and Δzc = 0, r = 1. The parameter Δzc represents a
shift along the z-axis of the nonlinear focus related to the most intense time slice,
whereas the parameter r accounts for pulse lengthening or pulse shortening induced
by dispersion and input chirp before the nonlinear focus.
We searched for parameters of the modified Marburger’s law (201,202) realizing

the best fit for each simulation performed with a given input chirp and input power
P0. First, we allowed all parameters aM , bM , Δzc and r to vary as a function of P0 in
the fitting procedure. However, best fits were obtained for nearly constant values of
parameters aM = 0.7823 and bM = 0.405, close to original Marburger’s coefficients.
We therefore decreased the number of free parameters from four to two by keeping
constant aM and bM and by allowing only Δzc and r to vary as functions of P0 and
chirp C.
The dashed curve in Fig. 4 shows an example of best fit to numerical results. For a

given input power P0, pulse splitting does only appear within a range of input chirps
since dispersion induced pulse lengthening leads to a decrease of the pulse power be-
low critical for strong chirp and low pulse power. Fits were therefore calculated for
parameters that led to a clear splitting event. Furthermore, for the highest powers
(50 Pcr), pulse reshaping into a flat-top pulse occurs before the nonlinear focus due
to multiphoton absorption. In that case, a proper fit could not be obtained due to
the assumption of a Gaussian pulse shape in the model [see Eq. (202)]. This restricts
the validity of out fits to chirp coefficients between -5 and 5 and pulse powers up to
40 Pcr.
Figure 5 summarizes curve fitting results. The parameter r takes into account

pulse lengthening during the propagation toward the nonlinear focus and therefore
naturally depends on both input chirp and power, which affects pulse reshaping
through pulse dispersion and beam self-focusing. At a given input power, both r
and Δzc are quasi linearly dependent on the chirp parameter. However, a larger re-
gion of chirp parameter and pulse power needs to be investigated to confirm this
linear dependence. Our data cover chirp coefficients between −5 and 5. Larger ab-
solute values for the chirp coefficient led to more complicated dynamics during pulse
propagation, for which pulse splitting was either absent or too short-lived to allow
for an accurate fit. Powers between 1.5 and 40 Pcr and chirp coefficients between
−5 and 5 led to clear pulse splitting events, and excellent agreement between nu-
merical results and the modified Marburger’s law for the splitting velocities. Positive
chirp values lead to pulse lengthening and thus tend to shift the nonlinear focus
toward larger distances with respect to the nonlinear focus of non-chirped pulses
position of the collapse (Δzc > 0 and increases with increasing C). In contrast, neg-
ative chirps lead to pulse compression and an increase of the peak power during
the self-focusing stage, resulting in a shift of the nonlinear focus toward the laser
(Δzc < 0).
All numerical results shown in Fig. 5 can be approximated with phenomenological

scaling laws that depend on the chirp parameter C and ratio p ≡ P/Pcr:

r = 1.58 + 0.0188(p− 1) + 3.94 + 0.348C√
p− 1 (203)

Δzc = −0.0259 + 4.14× 10−5(p− 1)2 + 5.49
p3
+
0.536C

(p− 1)1.63 . (204)

We found in particular an excellent R-square of 0.9998 by fitting numerical results of
Fig. 5a with Eq. (203) whereas the error in fitting numerical results in Fig. 5b with
Eq. (204) does not exceed 10%.
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Fig. 5. Modified Marburger’s law coefficient dependence on power for different pulse chirps.

We expect that this two-parameter modification of Marburger’s law accompanied
by the moving focus picture is generic enough to apply to other media and laser wave-
lengths. Scaling laws (203) and (204) have to be confirmed or adapted for different
media and laser wavelength; in particular the exact value of the fitting parameters
is expected to depend on medium dependent parameters such as the cross-section
for nonlinear absorption and the GVD coefficient. This dependence has to be deter-
mined by fitting additional numerical results extending the results of this project. The
method allows us to predict in a large parameter range the position in local time and
the velocity of split-pulses formed by the filamentation dynamics in an ideal medium
representing water. Extension of this moving focus picture to realistic condensed me-
dia that include high-order dispersion, plasma generation and Raman-Kerr effects, is
an open question which may be answered to by relaxing the assumption of a frozen
Gaussian profile for the pulse power in the moving focus picture, as proposed in e.g.,
Ref. [3,55].

4.2 Simulation project example using the UPPEcore simulator

The following Section is devoted to a worked-out example using the UPPEcore, which
is a minimalist, but widely customizable software implementation of a UPPE solver.
Its design combines a solver for a multi-component propagation equation as described
in Sections 2 and 3, with most common options for nonlinear medium response models.
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It also has an interface which makes it possible to add user-defined initial conditions,
medium models and various operators acting on optical fields. While used as a vehicle
for a simulation example, the UPPEcore is not the subject of this Section. Rather,
we aim to discuss modeling and numerical issues which are universal, and common
to numerical experiments supported by any simulation software.
On the modeling and computational level, our main goal is to illustrate the way

a computational physicist designs and executes numerical experiments. This is why
details, which are normally omitted in research papers, are provided in order to elu-
cidate important numerical and practical issues. Our hope is that this will allow our
reader to utilize this worked-out example as a self-study learning exercise.
On the nonlinear optics level, we describe a comprehensive computational model

for a proposal of a pump-probe experiment with ultrashort femtosecond pulses, in
which the aim is to compare manifestations of focusing and defocusing nonlinearities
that occur within an optical filament. The scheme extends a recent experiment [56]
which was designed to test a proposal that femtosecond filamentation may not require
defocusing by free electrons. Beyond what was done in [56], here we want to explore
additional possibilities in detection of the probe pulse. In particular, it is shown that
angularly resolved spectra of the probe provide clear signatures that distinguish fo-
cusing and defocusing processes. Thus, the goal of the numerical experiment is to
propose extension and provide a proof of principle for an experimental method to
distinguish the Kerr interaction, occurring inside a femtosecond filament, from other
types of nonlinear effects. For simplicity, we shall consider propagation in a noble
gas (argon), assuming that the only nonlinear processes affecting pulse propagation
are the instantaneous Kerr effect, multi-photon ionization, and interaction with free
electrons (plasma). Naturally, chromatic dispersion of argon is also fully taken into
account.

The experiment scheme is shown in Fig. 6. A high intensity pump pulse
(λ = 800 nm) is strongly focused with lens f1, so that it undergoes filamentation
through Kerr interaction and induces ionization in the focal region. A broad-beam
second-harmonic probe pulse (λ = 400 nm) is injected at a much lower intensity from
the second input port of beam-splitter BS1. Its linear polarization is set at +45

◦ with
respect to the pump pulse polarization, and a controlled delay is applied between the
two pulses. While in a real experiment or in a full-blown simulation the pump-probe
delay would be scanned, we restrict ourselves to comparison of two specific cases: We
set the delay such that the pulses either overlap, or the probe propagates in the wake
of the pump pulse through the filamentation region. In the latter case, field-plasma
interaction is the only source of nonlinearity affecting the propagation of the probe,
and its polarization is expected to remain unchanged, due to the isotropic nature of
the plasma interaction. In the first case, i.e. when the two pulses overlap, the four-
wave mixing process, originating in the third-order nonlinear response of the medium,
will transfer some energy to the initially empty polarization direction of the probe
field, at −45◦.
We analyze the resulting properties of the probe beam after it samples the filament

volume, and deduce from it information about the interactions taking place inside.
We will look at the fluence profiles of the probe beam in the far field beyond focus,
which mimics the use of a CCD camera to visualize the transverse profile of a beam.
In order to extract as much information as possible, and in particular to explore the
possibility to distinguish Kerr and plasma related effects, we utilize a polarizer in the
detection path of the experiment. Alternatively, we examine the so called angularly
resolved spectrum of the probe [57]. As will be seen shortly, the far-field spectrum as
it is also often called is an attractive tool for this kind of experiment, because it car-
ries both temporal and spatial information pertaining to the inside of the interaction
zone which is otherwise difficult to access [34,58–60].
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Fig. 6. Scheme of the simulated experiment: an intense, ultrashort pump pulse (λ = 800 nm,
τp = 15 fs) is focused by lens L1 in a gas chamber filled with argon at atmospheric pressure,
where it undergoes filamentation. A broad-beam probe pulse (λ = 400 nm) polarized at
θ = +45◦ with respect to the polarization of the pump pulse, is injected through beam-
splitter BS1 with a tunable temporal delay, so that it can overlap with the pump pulse or
follow in its wake through the focus region. The pump pulse is then blocked with a bandpass
filter BF , while the probe is analyzed with the polarization filter P3 in the orthogonal
direction (θ = −45◦) with respect to the initial polarization imposed by P2. The output
field is divided by beam-splitter BS2 and analyzed either with CCD and/or in an imaging
spectrometer.

In order to give the reader an idea of how a practical simulation is actually
executed, we next describe our procedure from the practitioner’s point of view.
Most often, one requires to run a series of preliminary simulations in the begin-

ning stages of a numerical experiment. To achieve an acceptable turn-around times
in this set-up phase, simulations are run with relatively coarse resolutions of the com-
putational domain grid. Later, a convergence study may be performed to determine
numerical grid parameters for the final production runs. In this example, we initially
used radial-temporal grids with 512 and 2048 sampling points for a domain with the
radius of 2 cm and 300 fs temporal size. This gave us an acceptable resolution and
qualitatively correct results in the preliminary runs which took typically only a few
minutes to execute. Later, to produce data shown in this Section, we improved the
computational domain parameters to those listed in Table 9, and a single run required
about an hour of wall-clock time.
In the first case (referred to as Case A), the delay between the two pulses was

adjusted so that they overlapped in the focal region, and so that Kerr effect is the
main source of nonlinear interaction. Instead of scanning through the pump-probe
delay values (as it would be done in real life) we performed a preliminary simulation
(on a coarse grid) meant to find suitable temporal delay. To do this, we switched off
all non-linear propagation effects, and observed pump and probe temporal intensity
profiles on the logarithmic scale to confirm that the pulse delays are set properly. A
similar procedure was applied to the second case (referred to as Case B) in which
the probe tailed the pump pulse. Naturally, the temporal delays depend on the group
velocity dispersion of the medium in which pulses propagate, and on the geometry of
a given experiment. For the sake of simplicity, it was assumed here that propagation
takes place in an argon gas from the beginning to the end.
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Table 9. Select simulation parameters.

Computational domain properties exploratory runs production runs
temporal domain size 300 fs 600 fs
# of points in temporal direction 2048 4096
domain radius 2 cm 2 cm
# of points in radial direction 512 1000, 1500
runtime few minutes ≈ 1 hour
Initial pump pulse parameters sampling Kerr sampling plasma

input intensity 1× 1015W/m2 1× 1015W/m2
wavelength 800 nm 800 nm
duration 15 fs 15 fs
beam waist 2mm 2mm
temporal shift (delay) −24 fs +50 fs
Initial probe pulse parameters (x,y pol. comp.)

input intensity 4× 1012W/m2 4× 1013W/m2
wavelength 400 nm 400 nm
duration 15 fs 15 fs
beam waist 6mm 6mm
delay +24 fs −24 fs

To illustrate how initial simulation runs can be accelerated, we applied the fol-
lowing approximation. We ignore nonlinear effect during the initial propagation stage
beyond the focusing lens where we consider the pump intensity to be low enough for
the nonlinearity to be unimportant. Because the UPPEcore solver is spectral, prop-
agation over this distance can be simulated in a single step while taking chromatic
dispersion and diffraction properly into account. The nonlinear interaction was then
activated in a 25 cm long region in the neighborhood of the focal point, starting 60
cm after the input plane. In order to speed up the simulation further, the pulses are
also propagated linearly after this region, again in a single step. This approximation
is legitimated by the low intensity of the two pulses outside the focal region and the
weak nonlinearity of argon, but it has to be emphasized that it should not be used
for publication-quality production runs. Nevertheless, as a practitioner’s trick for the
initial stages of a project, it is very useful.
The scheme in Fig. 6 encompasses two experiments with different detection paths.

To economize numerical calculations, we split the procedure into two simulation
stages. The first covered the pulse evolution up to the end of the nonlinear focus do-
main, where the complete snapshots of the optical field were recorded into checkpoint
data. This was subsequently retrieved by the same simulator performing calculations
corresponding to the two different ways to detect the probe beam. This approach is
often useful when a parameter space must be explored, and when at the same time
a fully developed “nonlinear initial condition” (i.e. one that requires substantial nu-
merical effort) can be utilized.
Table 9 collects some of the simulation parameters in order to illustrate typical

parameters characterizing the numerical side of the simulation.
Next we discuss representative results produced in our simulations. First, let us

consider the detection path in which a CCD camera records the spatial beam profile
in the probe (see Fig. 6). Figure 7 shows characteristic patterns which reveal the
presence of the focusing and de-focusing interactions in the nonlinear focal volume.
These radial profiles depict fluence as it would be seen by a CCD (in the far field be-
yond the filament), and consist of a wide background given by the unperturbed probe
beam, and of additional structures located around the center. These can be viewed
as interference patterns between the original probe beam and the probe component
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Fig. 7. Interference patterns in the probe beam detected by a model CCD (see Fig. 6).
The left panel corresponds to the pump-probe delay which results in the overlap of the two
pulses directly in the focal region. The right panel is obtained for the probe following the
pump without a direct temporal overlap.

which diffracted off the refractive index perturbation created by the pump. Since the
probe beam diameter is relatively large, its diffraction is negligible over the propa-
gation distances characteristic for this numerical experiment. Consequently, it serves
effectively as a plane-wave reference beam. In contrast, the refractive index pertur-
bations in the filament are rather small-scale, and therefore act as a localized source
of spherical waves emanating from the nonlinear focus. However, the whole picture is
rather complex, because this source is spread over the length of the filament. Since
the latter has a length of several centimeters in our case, one cannot understand its
effect in terms of a thin phase screen. Rather, we observe a superposition of partial
waves from all locations along the optical axis where the probe experienced effects
of the pump or of the free electrons left in its wake. Moreover, time dependence of
the Kerr-induced nonlinear index changes impose modulation on the probe pulse and
result in a nontrivial spatio-temporal spectrum. We will show how this can be used
to obtain more information about the nonlinear processes in the filament.
An important point is that the detected pattern depends on the polarization when

the probe pulse samples the Kerr effect induced by the linearly polarized pump. This
is visible in the difference between the blue and red lines in the left panel, which
correspond to the parallel and perpendicular polarization (with respect to pump po-
larization direction) of the probe after interaction. The two polarization components
could be observed experimentally by reorienting the polarization analyzer P3 accord-
ingly, i.e. parallel or perpendicular to the pump beam polarization. On the other hand,
the effect of defocusing by free electrons, illustrated on the right, is isotropic and both
polarization components of the pump suffer equal phase shifts. Consequently, the in-
terference pattern induced by the plasma does not depend on the detected probe
polarization. From this follows that the polarizer before the CCD detector can be uti-
lized to distinguish between the Kerr effect (case a) and plasma-induced defocusing
(case b).
Next we turn to an alternative way to detect the probe beam, shown as the

horizontal path in Fig. 6. In this case, the detector is behind the analyzer oriented
at 90 degrees with respect to the initial polarization of the probe beam. We con-
sider either CCD or, alternatively, an imaging spectrometer recording an angularly
resolved spectrum. Because of the crossed polarizers, only the light which experienced
the nonlinear polarization rotation (due to the interaction with the pump pulse) is
transmitted on the CCD detector. The observed pattern is illustrated in Fig. 8. The
red curve shows a two-peak superposition for the pump-probe delay that samples
the cross-phase modulation by the Kerr effect (case a). This is actually a part of the
diffracting probe component we eluded to in the above paragraphs. In contrast, much
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Fig. 8. Probe beam profiles detected behind the analyzer. Temporal pump-probe delays
that result in sampling of the Kerr effect (case a) and defocusing by free electrons (case b)
are depicted by the red and blue lines, respectively. With the crossed polarizer-analyzer pair,
only the pulse component that resulted due to nonlinear polarization rotation is detected.
Because the effect of free electrons is isotropic, the tiny signal shown in blue is only due to
supercontinuum extending from the pump into the probe spectral region.

weaker signal is seen for the delay at which the probe only samples the plasma (case
b). In fact the signal should be zero, and what we see is the energy of the supercontin-
uum extending from the pump [61,62]. Because the supercontinuum is mostly linearly
polarized, it results in a tiny but non-zero signal on the detector. This measurement
scheme thus presents the option to eliminate the isotropic plasma effects, and only
observe the instantaneous Kerr-induced interaction.
A more sophisticated way to distinguish between the effects originating in the

Kerr and plasma, is based on the so called angularly resolved spectra. These can be
measured for the resulting probe beam as indicated in Fig. 6 depicting the scheme of
our numerical experiment. The lens f2 collects the light emanating from the filament
region, and focuses all rays with a common direction (angle) to the focal plane. in
its focal plane. If the latter coincides with the entrance slit of an imaging spectrom-
eter, each spatial direction is separately spectrally analyzed. As a result, we obtain a
two-dimensional map of spectral power as a function of angle of propagation (after
the nonlinear focus) and frequency (or wavelength). We use transverse wave numbers
instead of angles, as these remain invariant when the beam passed between different
media. A real spectrum analyzer, that resolves angles rather than transverse wave
vectors, would give a slightly deformed version of the density plot reported in Fig. 9,
because of the broadband nature of the source.
Angularly resolved spectra of the probe are depicted in Fig. 9. The left panel

shows the spectrum for the pump-probe delay that samples the Kerr effect, and the
panel on the right represents the analogous result for a long probe delay at which
only plasma-related effect modify the probe.
One can see a clear difference; Because the Kerr effect results in the time-

dependent index perturbation, it imprints on the probe spatial and temporal changes.
As a result, the angularly resolved spectrum exhibits a relatively complex structure.
For now we leave the interesting question if this structure can be used for an inver-
sion problem to deduce the map of the Kerr induced change of the refractive index
within the filament, and turn to comparison with the spectrum induced by plasma
effects. Because the probe samples free electron density which is barely changing in
time (e.g. on the nanosecond time scale due to recombination), there is very small
temporal modulation. This results in the far-field spectrum that extends in the radial
direction, but has no structure in the frequency direction. The radial extent is larger
than that of the Kerr-induced spectrum, which reflects the fact that the plasma den-
sity is concentrated in a spatially narrower region. This clearly shows that angularly
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Fig. 9. Angularly resolved spectra of the probe pulse. The left panel illustrates the effect
of the Kerr induced cross-phase modulation imposed on the probe beam by the pump (case
a). The right panel shows the result of de-focusing of the probe by the free electrons left
in the wake of the pump pulse (case b). The over-saturated region in the right panel is
the supercontinuum light originating from the pump pulse. Both panels have the same
dynamic range of four orders of magnitude, but the second spectrum is biased to lower
intensity – this is why the supercontinuum components are much less prominent in the left
panel.

Fig. 10. Interference patterns in the 2-micron wavelength probe beam as detected by
a model CCD (see Fig. 6). Due to the longer wavelength, the signal from free elec-
trons is relatively stronger compared to the case of 400 nm wavelength probe shown in
Fig. 7.

resolved spectra can be used experimentally to help distinguish the origin of the non-
linear response. It may therefore be used as an important tool to guide experimental
investigation on filamentation in nonlinear media.
Finally, let us briefly examine the role of the probe wavelength. There is of course

the issue of detection, but for the purpose of this exercise we do not want to consider
this (in practice very important) aspect of the problem. Rather, we concentrate on
the physical properties which affect how the probe responds to the filament. Let us
therefore consider a probe beam, perhaps created in an OPA from the pump pulse,
at a central wavelength of 2 micron. Figure 10 shows the probe beam profiles for
two pump probe delays, in analogy to Fig. 7. One can see that the signal from the
plasma induced defocusing (blue) becomes relatively stronger in comparison with the
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Kerr signature (red). This is because the defocusing power of free electrons is inversely
proportional to the light frequency, while the Kerr-induced index is only weakly
wavelength dependent. Thus, longer probe wavelength is advantageous when one
needs to improve sensitivity to plasma-related effects.
Another effect brought in by the longer probe wavelength is the stronger diffrac-

tion. This manifests itself in the wider spreading angle of the interference pattern we
observe. Picture 10 would therefore be recorded closer to the filament to accommo-
date the interesting part of the probe beam on the given CCD chip.
Yet another issue to consider is the separation between the probe and pump

light in detection. Because the pump spectrum can broaden significantly, a small
portion of it can be detected in the spectral range of our probe. Clearly, our mea-
surement scheme works best when this undesirable signal can be kept sufficiently
small. In the present illustration, having the probe on the longer wavelength side of
the pump results in a better separation of pump and probe spectral components.
Naturally, the choice of the probe pulse will be mainly decided based on the detec-
tion and generation possibilities, and on the type of the data one aims to collect
(e.g. CCD pictures as opposed to only total energy for the curves shown in Fig. 8),
but it is important to keep in mind the probe wavelength effect for the purpose of
interpretation.
On the computational level, the probe wavelength will affect the separation be-

tween the initial pulses in the computational domain (which reflects the relative tem-
poral delays). The group-velocity difference between the pump and probe also affects
how different temporal slices of the pump are sampled. For example, the second har-
monic is able to sample the leading edge of the pulse without experiencing the plasma
induced defocusing because the slower probe always leads the pump pulse during their
approach to the focal region. On the other hand, longer wavelength probe can cleanly
sample the free electrons left in the wake of the pump pulse, without interacting with
the strong pump at all. In this sense the two approaches can be viewed as comple-
mentary.

5 Conclusion

The last decade has brought lot of progress in ultrafast nonlinear optics, especially
in the area of generation and control of femtosecond pulses with extreme intensi-
ties. This advancement would not be possible without the contribution of numeri-
cal simulations. Computer models have not only been instrumental in interpretation
of experimental results, but represent the most important component of the theo-
retical picture. As a result, a growing number of researchers in the area wear two
hats, one of an experimentalist and one of a computational physicist. Ranks of those
who need to utilize computing as a component of their experimental work are wider
still.
This motivated the inclusion of a simulation and modeling course in the ex-

perimental Stella 2011 Summer School on laser physics, and writing of this guide.
Our main goal was to provide a self-contained overview of theoretical approaches
and practical computer simulation methods relevant in the general area of nonlin-
ear optics. Most of the material is presented at a level of detail which is not usual
for regular research papers or review articles, and most modeling problems are dis-
cussed from more than one point of view. This approach was chosen to facilitate the
second, but not less important aim of this work, namely to serve as an introduc-
tion into computer simulation for the broadest possible audience of researchers and
students.
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Appendix A. Useful definitions

In order to facilitate navigation throughout this paper, we provide tables with a list
of abbreviations (see Table 10) and a list of symbols used in Equations of this paper
(see Table 11).

A.1 Abbreviations

A.2 Symbols

Table 10. List of abbreviations.

PDE Partial Differential Equation
ODE Ordinary Differential Equation
UPPE Unidirectional Pulse Propagation Equation
FME Forward Maxwell Equation
FWE Forward Wave Equation
FOP First-Order Propagation equation
NLS Nonlinear Schrödinger Equation
NEE Nonlinear Envelope Equation
LEE Linear Envelope Equation
FEE Forward Envelope Equation
PC-NLS Partially Corrected Nonlinear Schrodinger Equation
SVEA Slowly Varying Envelope Approximation
SEWA Slowly Evolving Wave Approximation
SEEA Slowly Evolving Envelope Approximation
GFEA Generalized Few-cycle Envelope Approximation
MA minimal approximation
PA Paraxial Approximation
FFT Fast Fourier Transform
FHT Fast Hankel Transform
MPI Multiphoton Ionization
MPA Multiphoton Absorption
GVD Group Velocity dispersion
THG Third Harmonic Generation
SPM Self Phase Modulation
SCG Super Continuum Generation
CEP Carrier Envelope Phase
FWHM Full Width at Half Maximum
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Table 11. List of symbols.

Symbol Unit Physical quantity or constant
E, E, E V/m electric field (vector, scalar, envelope)
B, B, B H/m magnetic field (vector, scalar, envelope)
H, H, H H/m magnetic induction (vector, scalar, envelope)
D, D, D C/m2 displacement field (vector, scalar, envelope)
J, J , J A/m2 free charge current (vector, scalar, envelope)
P, P , P C/m2 nonlinear polarization (vector, scalar, envelope)

P(1), P (1), P(1) C/m2 Linear polarization (vector, scalar, envelope)
es unit vector in the polarization plane (direction)
z - unit vector in the z-direction
A+, A−, Aμ units of A amplitudes of the forward (+) or

backward (−) propagating components
λ = ±1, ± - indicator for forward or backward propagation
Eλ, Hλ harmonic wave solutions to Maxwell equations
E0, H0 amplitudes of harmonic waves
Em, Hm amplitudes of transverse modes
Nm(ω) normalisation constant
X,Y, T m, m, s normalization volumes or window sizes
δm,n, δΩ,ω - Kroenecker symbols
ε0 = 8.85× 10−12 F/m permittivity of free space
μ0 = 4π × 10−7 H/m permeability of free space
c = 2.998× 108 m/s light velocity in vacuum
me = 9.11× 10−31 kg electron mass
qe = 1.60× 10−19 C electron charge
� = 1.05× 10−34 m2kg/s Planck constant
ω s−1 frequency coordinate
ω0, ωr s−1 pulse central and reference frequencies
Ω ≡ ω − ω0 s−1 frequency departure from ω0
t, τ , t′ s (laboratory, local) time coordinate
z,ζ m propagation coordinate
x,y m transverse coordinates
ε(t), ε(ω) - permittivity of the medium

χ(1)(ω) - material linear susceptibility
n(ω) - linear refraction index
n0 ≡ n(ω0) - linear refraction index at ω0
I W/m2 I = ε0cn0|E|2/2, Pulse intensity
Eω0 , E3ω0 V/m Electric field envelopes for fundamental and

third harmonic pulses
k(ω) ≡ n(ω)ω/c m−1 material dispersion relation
k0 ≡ k(ω0), kr ≡ k(ωr) m−1 wavenumbers at frequency ω0, ωr

vg ≡ 1/k(1)0 , vf m/s pulse group and moving frame velocities

k
(l)
0 ≡ dlk/dωl|ω0 sl/m dispersion coefficients

κ(ω) ≡ k0 + k(1)0 (ω − ω0) m−1 propagation constant in NEEs with MA

D(i∂τ ) ≡∑+∞
l=2

k
(l)
0
l!
(i∂τ )

l m−1 high-order dispersion
Kz, Kζ m−1 propagation constants for the canonical

equation
Q, Q m−1 nonlinear dispersion operators for the

canonical equation
K0(Ω) ≡ K(Ω,k⊥ = 0) m−1 linear frequency dispersion
∂z ≡ ∂/∂z m−1 partial derivative with respect to z

r ≡ (x, y), r ≡√x2 + y2 m transverse coordinate vector, modulus
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Table 11. Continued.

Symbol Unit Physical quantity or constant

kx, ky, kz m−1 transverse (x, y) and longitudinal (z)
wave numbers

k⊥ ≡ (kx, ky) m−1 transverse wave vector

k⊥ ≡
√
k2x + k2y m−1 modulus of the transverse

wave vector
Δ⊥, ∇2⊥ m−2 transverse Laplacian

χ(3) m2/V2 material third-order susceptibility
n2 m2/W nonlinear index coefficient
α - fraction of delayed contribution

to the Kerr effect
ωR, Γ s−1 characteristic Raman frequencies
Qi V2/m2 effective oscillator amplitude

(Raman response)
R0 ≡ (Γ2 + ω2R)/ωR, R(t) s−1 Raman response (amplitude

and functional form)
K - number of photons involved in MPA
βK W1−Km2K−3 cross section for multiphoton absorption
σK s−1W−Km2K cross section for multiphoton ionization
Ui J ionization potential or gap
W (I), Wofi, Wava s−1 ionization rate, optical field ionization,

avalanche
τc s collision time
ρ, ρnt m−3 density of electrons and neutral atoms
ρc m−3 critical plasma density
ρf m−3 density of free space charge
σ(ω) m2 cross section for inverse Bremsstrahlung
Pcr, Pin, P0 W critical, input and peak powers
p = Pin/Pcr - ratio of input to critical powers
f , df m beam curvature (focal length) and

focal distance
w0, wf m beam radius (1/e2), waist
zR ≡ k0w20/2, zf ≡ k0w2f/2, m Rayleigh lengths for input beam width

or waist, Dispersion length

zds ≡ t2p/2k(2)0
C - chirp coefficient
tp, τFWHM s pulse duration (half duration at 1/e2,

FWHM)
w(z), R(z), T (z), Ψ(z), Φ(z) m, m, s, - , - beam width, curvature, pulse duration,

axial phases in laws for Gaussian optics
Tm ≡ tp/(1 + C2), s, m minimal pulse duration
zm ≡ −Czds/(1 + C2) (chirped pulse) and pulse shortening

distance
Δr, Δx, Δz m radial, transverse and longitudinal

step-sizes
Δt, Δω s, s−1 time and frequency step-sizes
xmin, xmax m boundaries of the transverse numerical

grid
rmin, rmax m boundaries of the radial numerical grid
ωmin, ωmax s−1 boundaries of the spectral grid
N⊥, Nx, Nt, Nz - numbers of steps in radial, transverse,

time and longitudinal directions
M , Kmax - numbers of propagation steps between

numerical diagnostics
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Table 11. Continued.

Symbol Unit Physical quantity or constant
Δj , Δt discretized Laplacian operators
ν = 0 or 1 - switch between planar and cylindrical

geometries
δ = Δz/4k0(Δr)

2 - normalized diffraction coefficient

d = −Δzk(2)0 /4(Δt)2 - normalized dispersion coefficient
L±(δ) ≡ 1± iδΔj , L ≡ L−1− L+ - tridiagonal matrices in the

Crank-Nicolson scheme
L+,l, L−,l - frequency dependent tridiagonal matrices
Kl, Dl m−1 discretized values for K and D at ωl
δl =

Δz
4(Δr)2Kl frequency dependent diffraction coefficient

dl =
ΔzDl
2

discretized dispersion values
L, N linear and nonlinear source terms
Nnj , N

n
l,j - discretized nonlinearity at zn, rj , ωl

A∗ (or c.c.), AT - complex conjugate of A, transpose of A
A ∗B - convolution

Â(x, y, ω) 1D Fourier transform of A(x, y, t), (t→ ω)
Ã(kx, ky, ω) 3D Fourier transform of A(x, y, t)
aM , bM , r, Δzc - , - , - , m coefficients of modified Marburger’s model
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