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Unidirectional pulse propagation equations [UPPE, Phys. Rev. E 70, 036604 (2004)] have provided a
theoretical underpinning for computer-aided investigations into dynamics of high-power ultrashort laser pulses
and have been successfully utilized for almost a decade. Unfortunately, they are restricted to applications in
bulk media or, with additional approximations, to simple waveguide geometries in which only a few guided
modes can approximate the propagating waveform. The purpose of this work is to generalize the directional pulse
propagation equations to structures characterized by strong refractive index differences and material interfaces.
We also outline a numerical solution framework that draws on the combination of the bulk-media UPPE method
with single-frequency beam-propagation techniques.
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I. INTRODUCTION

Computer simulations in the field of nonlinear optics have
been playing an important role in understanding ever more
extreme regimes in light-matter interactions. Dynamics of
ultrashort, high-power laser pulses is one particular field,
which motivated significant effort and concomitant progress
in numerical methods designed for optics at femtosecond
time scales. One can say that optical filamentation played the
role of a catalyst for the development of a number of pulse
propagation models, which made detailed studies of extremely
nonlinear regimes a possibility. However, the most accurate
pulse propagation models remain restricted to bulk media, both
gaseous and condensed, while waveguiding structures have to
be treated with more significant approximations.

The purpose of this paper is to put forward a theoretical
framework, which will allow the implementation of simulators
capable of handling pulse propagation regimes characterized
by the following four attributes:

(A) structures with strong refractive index contrasts;
(B) directional long-distance wave propagation;
(C) strong waveform reshaping, both in time and space;
(D) extreme spectral dynamics, with resulting spectra often

encompassing more than an octave in frequency.
This combination is rather difficult to handle numerically.

For example, there exists a wealth of work (e.g., [1–5])
utilizing the beam propagation method (BPM), which is
designed for regimes A and B, and can incorporate certain
weak nonlinearities [6], but are restricted to narrow spectral
regimes. Time-domain beam propagation methods have been
developed (e.g., [7,8]), though they concentrate mainly on
linear regimes. Direct Maxwell’s equations solvers [9–11] are
well suited to regimes A, C, and D, but are prohibitively
expensive for simulating long-distance pulse propagation.
Simulators based on the unidirectional pulse propagation equa-
tion (UPPE) [12,13] and other types of one-way propagation
equations [14–23] can cope with attributes B, C, and D, but
require additional approximations to simulate waveguiding
structures, such as hollow-slab leaky waveguides [24] or
nonlinear nanowaveguides [25–27]. In other words, methods

suitable for the combination A + B + C + D have yet to be
developed.

In this paper, we present a step in this direction and describe
a generalization of the UPPE, which can be applied to nonlin-
ear structured media with strong differences between refractive
indices of the constituent materials. Rather than assuming
unidirectional propagation from the outset, we depart from
the wave equations and derive an auxiliary evolution system.
This is used to find projection operators that extract forward
and backward propagating components of the field from an
arbitrary optical field waveform. These operators transform
the auxiliary system into a coupled forward-backward pulse
evolution system that is exact and accounts for structured
media. Only then is the unidirectional propagation approxima-
tion applied, which maintains important terms otherwise lost
if the approximation is made from the beginning—a similar
approach as that of Kinsler and co-workers [22,23,28,29].

The key to the approach we present is that the pulse
evolution equations are cast in a form which makes it possible
to combine proven numerical methods. More specifically,
nonlinear interactions can be treated by ordinary differential
equation (ODE) libraries, the same way it has been done
with UPPE-based simulators [30]; the linear propagator can
be treated by tapping the rich knowledge base of BPM,
and in particular the techniques developed for wide-angle
BPM (WA-BPM) (see Refs. [31,32] for early formulation,
and Refs. [33,34] for examples of various Padé approximated
propagators).

The remainder of this paper is organized as follows.
First, in Sec. II, we give a brief summary of the UPPE
model. In Sec. III, this model is generalized and a cou-
pled forward-backward pulse evolution system is derived. A
unidirectional propagation approximation is applied and the
resulting equation transformed into a form analogous to a bulk-
medium UPPE. Considering a homogeneous medium finds
the generalized equation reduces back to UPPE. Section IV
outlines a strategy for a numerical solution of the generalized
system and Sec. V presents illustrative simulation results for a
capillary waveguide system. We summarize and discuss future
directions in Sec. VI.
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II. UNIDIRECTIONAL PULSE PROPAGATION
EQUATIONS: SUMMARY

The main purpose of this paper is to generalize the UPPE
framework. For the reader’s convenience and ease of reference,
we briefly summarize the corresponding equations.

In a homogeneous medium characterized by a dielectric
permittivity ε(ω), a pair of coupled UPPEs are exact [13,35]
and can be written in the form

∂z
�E⊥

+ (k⊥,ω,z) = +ikz
�E⊥

+ (k⊥,ω,z) +
∑
s=1,2

�e⊥
s �es

·
[

iω2

2ε0c2kz

�P (k⊥,ω,z)− ω

2ε0c2kz

�J (k⊥,ω,z)

]
,

(1)

∂z
�E⊥

− (k⊥,ω,z) = −ikz
�E⊥

− (k⊥,ω,z) −
∑
s=1,2

�e⊥
s �es

·
[

iω2

2ε0c2kz

�P (k⊥,ω,z)− ω

2ε0c2kz

�J (k⊥,ω,z)

]
.

(2)

These equations describe the evolution of �E⊥
± (k⊥,ω,z), which

are the spectral (Fourier) representation of the electric field.
k⊥ = {kx,ky,0} are the transverse wave numbers and kz is the
z component of the wave vector,

�k = {
kx,ky,kz ≡

√
ω2ε(ω)/c2 − k2

x − k2
y

}
, (3)

which satisfies the dispersion relation k2 = ω2n2(ω)/c2. The
two polarization vectors �es(k⊥,ω) are orthogonal to �k and to
each other, but otherwise can be chosen freely. The superscript
⊥ denotes the transverse part (i.e., x,y) of the corresponding
vector. Equations (1) and (2) are mutually coupled through the
nonlinear medium polarization �P (k⊥,ω,z) and current density
�J (k⊥,ω,z). These responses are functionals of the electric

field. They are normally specified in the real-space and -time
representation:

�P (r⊥,t) = �P ({ �E(x,y,t)}) , �J (r⊥,t) = �J ({ �E(x,y,t)}).
It has to be emphasized that the system of Eqs. (1) and (2) is

exact and together with the �∇ · �D equation (which can be used
to obtain the z component of the field if needed) is equivalent
to Maxwell’s equations. However, as with direct Maxwell’s
equations solvers, it would be difficult to solve in its entirety,
i.e., including forward and backward propagating waves.
In practice, the unidirectional propagation approximation is
assumed, and the medium response is calculated solely from
the forward propagating waveform:

�P ( �E), �J ( �E) → �P ( �E+), �J ( �E+). (4)

Under this approximation the system reduces to a single UPPE,
Eq. (1). For details of the numerical solution, the reader is
referred to Ref. [30]. Here we only point out that the native
representation suitable for numerical implementation relies on
spectral amplitudes �As,+(k⊥,ω,z), which only change with z

due to nonlinear interactions with the medium. They are related

to the electric field through the linear propagator eikz(kx ,ky ,ω)z:

�E⊥
+ (k⊥,ω,z) =

∑
s=1,2

�e⊥
s

�As,+(k⊥,ω,z)eikz(kx ,ky ,ω)z. (5)

The corresponding UPPE equation,

∂zAs,+(k⊥,ω,z) = ωe−ikzz

2ε0c2kz
(6)

�es · [iω �P (k⊥,ω,E+(z)) − �J (k⊥,ω,E+(z))],

constitutes a large system of ODEs. This is the representation
in which it is solved numerically. Because the medium
response is calculated in the real-time representation at each
spatial point, spectral transforms in both directions have to be
invoked multiple times when the right-hand side of the ODE
system is evaluated.

The main limitation of the UPPE approach is that it is
restricted to homogeneous media. Weakly guiding structures
can be included as part of the polarization response, but
geometries with strong material contrasts and interfaces cannot
be efficiently simulated. Reference [13] shows a derivation
of the UPPE system for waveguiding structures, but its
implementation requires knowledge of the full system of
electromagnetic modal fields, which is impractical to obtain
even for geometries that admit exact solutions. Therefore,
waveguiding scenarios can only be simulated under additional
assumptions, which require that the fields can be described as a
superposition of a few guided or leaky modes of the structure,
whatever field configurations evolve.

The practical limitation of the UPPE, and in fact of all other
unidirectional pulse propagation methods, originates in the
identification of the forward and backward propagating waves
resting on the usage of a reference homogeneous medium.
To elucidate this, let us consider the following example. Let
ε(ω) represent a chosen homogeneous background, and let
χ (�r⊥,ω) be such that ε + χ (r⊥) gives the actual permittivity
of the structure. The variable part χ (r⊥) can be treated within
the polarization term of Eq. (6), P (r) = ε0χ (r⊥)E+(r⊥).
Now note that even if χ is constant throughout space, the
propagation constant of a plane wave predicted by Eq. (6),
i.e., kz(ω,k⊥) + χω2/[2c2kz(ω,k⊥)], is only a second-order
Taylor approximation to the exact plane-wave propagation
constant

√
ω2[ε(ω) + χ (ω)]/c2 − k2

⊥ . On the other hand, it
is straightforward to show that if we retained both coupled
UPPEs (1) and (2), the resulting propagation constant would
be exact, independently of the choice of the reference ε(ω).
We thus see that if χ (r⊥) varies in space, no matter how we
select the reference medium ε(ω), even the linear problem
is not solved exactly by a single UPPE. This means that if
we wish to use the unidirectional approximation for nonlinear
interactions, we must find a way to marry it with an exact
propagation description in the linear limit. This in turn implies
that no part of the refractive index variation in space should be
included in the polarization term of the propagation equation.

III. DIRECTIONAL PULSE PROPAGATION EQUATIONS

In this section, we generalize unidirectional pulse propaga-
tion equations to situations with material interfaces parallel to
the propagation direction z and with strong refractive index
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differences between materials that comprise the structure.
Central to this task will be the ability to extract the true
forward and backward propagating components of the total
electromagnetic field. The main deviation from the method
described above is that the pulse propagator native representa-
tion will be mixed. We will retain the spectral representation
of the frequency (time) dimension, but will use the real space
representation for the transverse spatial dimensions x,y. This
“mixed representation” approach is often applied, e.g., to
simulations of femtosecond filaments because it allows the use
of nonhomogeneous grids and better boundary conditions [30].
In our case, the main rationale for real-space representation
in the transverse cross section is the need to accommodate
material interfaces.

A. Model of a nonlinear, structured medium

Consider a nonmagnetic, isotropic dispersive medium, with
the dielectric permittivity ε(x,y,ω), which only depends on
coordinates x and y and angular frequency ω. We assume
there are no free charges or currents. The constitutive relation
for all media will be written in a form using polarization to
account for all properties except the linear ε(ω),

P = P(x,y,{E(x,y,t)}). (7)

We assume that an algorithm is given that computes polariza-
tion from a given history of the electric field vector E(x,y,t)
at a specified point [x,y]. The first two arguments of P are
meant to indicate that this algorithm can depend, through the
medium properties, on the transverse location [x,y] but not on
the longitudinal coordinate z. The concrete functional form of
P is unimportant for the present purposes, but for a specific
example, the reader can think of the instantaneous optical
Kerr effect in which the local index of refraction changes
proportionally to the square of the electric field vector. As
the medium is isotropic, the polarization direction follows that
of E:

PKerr (x,y,{E(x,y,t)}) = 2ε0n̄2(x,y)
(
E2

x + E2
y + E2

z

)
E.

(8)

Here, n̄2(x,y) stands for the nonlinear index, which as it
indicates, may depend on location. Other models of light-
matter interactions that have been used in simulations are
described in articles on filamentation [36,37] and Ref. [30]
shows methods for their numerical implementation.

To keep notation simple, we will not use current density
explicitly. In general, nonlinear interactions with the medium
can be equivalently formulated either in the polarization or
current density language, so this means no loss of generality.
In numerical simulations, using both current and polarization
may actually be convenient, and it only requires trivial
extension of our results.

B. Fields in terms of analytic signals

In numerical simulations, it is often easier to work with
the so-called analytic signals of the electric field. They are
commonly used to represent real-valued quantities in terms of
complex-valued representations. Here we use analytic signals
to represent all real quantities (E(t),P(t)). For example, the

electric field is obtained as a real part of its analytic signal:

E = Re{ �E(x,y,z,t)}, (9)

which has its spectrum restricted to positive frequencies:

�E(x,y,z,t) =
∫ ∞

0
dω �E(x,y,z,ω)e−iωt . (10)

Here, and in what follows, we will distinguish between
temporal and spectral representations of functions through
their respective arguments t and ω. Because the only time
we need the representation of the electric field in the time
domain is when we compute the nonlinear medium response
(i.e., polarization), we will work mostly in the spectral
representation.

C. Derivation of directional pulse propagation equations

Our departure point is the wave equation for the electric
field, accompanied by a constraint in the form of the divergence
equation,

�∇ �∇ · �E − ∇2 �E = ω2

c2

(
ε �E + 1

ε0

�P
)

, �∇ · �D = 0. (11)

While we have assumed no free charges and currents, high
intensities can lead to medium ionization and subsequently to
electrons drifting away from their parent ions. However, our
treatment aims to describe femtosecond pulses. On such a short
time scale we can safely assume that even when ionization
occurs, the positive and negative charges do not have enough
time to separate, and the average local charge remains zero.
Therefore, using the divergence equation,

�∇ · �D = ε0ε �∇ · �E + ε0 �E · �∇ε + �∇ · �P = 0, (12)

�∇ · �E can be expressed in terms of the nonlinear polarization
divergence and transverse electric field components as follows:

− �∇ · �E = 1

ε
�E⊥ · �∇⊥ε + 1

ε0ε
�∇ · �P . (13)

The transverse (x,y) part of the wave equation is thus rewritten
to separate the linear and nonlinear terms,

− ∂zz
�E⊥ = L̂ �E⊥ + N̂⊥[ �E]. (14)

Here, the linear operator L̂ is related to the corresponding
Helmholtz equation (for a fixed angular frequency). It acts
only on the transverse electric field vector,

L̂ �E⊥ ≡ ω2

c2
ε(r⊥,ω) �E⊥ + �⊥ �E⊥ + �∇ 1

ε
�E⊥ · �∇⊥ε. (15)

The nonlinear operator N̂ acts on �E⊥, but in general, also
depends on the Ez component

N̂ [ �E] ≡ ω2

ε0c2
�P ( �E) + �∇ 1

ε0ε
�∇ · �P ( �E). (16)

We will address how to obtain Ez later. For now, let us assume
that it can be calculated once Ex,y are known. To obtain
propagation equations for �E⊥(z,x,y,ω), we first introduce
auxiliary field amplitudes, effectively doubling the number
of variables used to describe the electric field:

Ei(z,x,y,ω) = E+
i (z,x,y,ω) + E−

i (z,x,y,ω), (17)
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with

E+
i = A+

i (z,x,y,ω)e+iζ z,
(18)

E−
i = A−

i (z,x,y,ω)e−iζ z,

where i = x,y and ζ stands for a parameter to be chosen
freely. Clearly, since ζ appears in neither Maxwell’s nor the
wave equations, physical observables must not depend on the
concrete choice of ζ , and this “gauge invariance” will become
manifest when we arrive at our final result. We define ζ as a
reference wave number to emphasize the fact that it has no
physical meaning by itself.

It is also important to keep in mind that the positive and
negative wave-number parts E±

i of the field are, in general,
not the forward and backward propagating portions of the
total waveform. So far we have not restricted how fast A±

i can
change with z. In principle, they could evolve so fast that their
variation would completely override the exponential factors
e±iζ z accompanying them. That is why both E±

i can contribute
to waves propagating in the positive and negative z direction
(see Ref. [29] for how this occurs). These auxiliary amplitudes
will help us to construct a unidirectional approximation in
a consistent way—but before we can do this, we must first
account for both (or all) directions of propagation (e.g., see
Ref. [22]).

By representing a single function Ei(z,x,y,ω) as a combi-
nation of two functions E±

i (z,x,y,ω), we have added artificial
degrees of freedom. These will be taken back by requiring that
E±

i satisfy a relation of our choice. Concretely, we impose an
additional constraint in the form

e+iζ z∂zA
+
i (z,x,y,ω) + e−iζ z∂zA

−
i (z,x,y,ω) = 0. (19)

The rationale behind this constraint is exactly the same as in
the variation of constants method for differential equations.
Namely, this representation eliminates the second derivatives
when one evaluates ∂zzE. Because of the constraint, the first
derivative simplifies to

∂zEi = iζ (E+
i − E−

i ) (20)

and the second derivative to

∂zzEi = −ζ 2Ei + iζ e+iζ z∂zA
+
i − iζ e−iζ z∂zA

−
i . (21)

Using this in the wave equation (14) together with the
constraint of Eq. (19), we obtain the evolution equations for
the auxiliary amplitudes A±:

∂zA
±
i = ±i

2ζ
e∓iζ z[(L̂ − ζ 2) �E⊥ + N̂⊥[ �E]]. (22)

To evaluate the right hand side of this system, �E⊥ is expressed
in terms of A±

i , and Ez is subsequently obtained from the z

component of the wave equation. Using Eq. (20), the latter can
be written as follows:

iζ ∂x(E+
x − E−

x ) + iζ ∂y(E+
y − E−

y ) − ω2

c2ε0
Pz( �E)

= ∂xxEz + ∂yyEz + ω2ε

c2
Ez. (23)

If not for nonlinearity, this is an inhomogeneous Helmholtz
equation that determines Ez in terms of the transverse field
components. The part of the polarization component Pz

which is nonlinear in Ez is usually very small and therefore
normally neglected. Should one not be satisfied with such
an approximation, the above equation can be solved by
iteration. For example, in Kerr media for intensities typical
of femtosecond filaments, a single iteration already gives an
accurate result.

The next step consists in identifying the parts of the electric
field waveform, which propagate in the positive and negative
directions along the z axis. The resulting equations become
more intuitive when expressed in terms of auxiliary E fields:

∂zE
+
i = +iζE+

i + i

2ζ
[(L̂ − ζ 2) �E⊥ + N̂⊥[ �E]], (24)

∂zE
−
i = −iζE−

i − i

2ζ
[(L̂ − ζ 2) �E⊥ + N̂⊥[ �E]]. (25)

This system, completed by Eq. (23), is equivalent to the wave
equation with the divergence constraint, and can be solved in
principle. However, in this form, it poses two problems. First,
in general, it would require very short propagation steps in
order to resolve both the forward and backward propagating
waves. Second, the physical input conditions for simulations
are normally given such that the problem to solve is a boundary
value problem rather than an initial value problem. The latter
point becomes evident when we realize that it is only the
forward-propagating field component that is specified at z = 0
(e.g., at the laser output). The second condition is that the
backward propagating field is zero at z → ∞ (i.e., at the
far end of a laboratory). Such a boundary value problem
would be rather difficult to solve. Fortunately, in many cases
the backward propagating wave can be neglected. We shall
therefore derive the beam propagation equations that account
for such a situation, but in the process shall identify the forward
and backward propagating fields (and see that they are, in
general, different from E±).

In matrix notation, the propagation equations read

∂z

( �E+
⊥

�E−
⊥

)
= i

⎛
⎝ζ + L̂−ζ 2

2ζ
+ L̂−ζ 2

2ζ

− L̂−ζ 2

2ζ
−ζ − L̂−ζ 2

2ζ

⎞
⎠( �E+

⊥
�E−

⊥

)

+ i

2ζ

(
+N̂⊥[ �E]

−N̂⊥[ �E]

)
. (26)

Having separated the linear and nonlinear part of the evolution
operator, we are in the position to determine the forward and
backward propagating parts of the field. This division will be
defined with respect to the linear system. In a spirit similar to
Ref. [12], two projector operators can be constructed from the
Helmholtz operator L̂ and its square root L̂1/2:

PF ≡ L̂−1/2

4ζ

(
+(ζ + L̂1/2)2 +(L̂ − ζ 2)

−(L̂ − ζ 2) −(ζ − L̂1/2)2

)
, (27)

PB ≡ L̂−1/2

4ζ

(
−(ζ − L̂1/2)2 −(L̂ − ζ 2)

+(L̂ − ζ 2) +(ζ + L̂1/2)2

)
. (28)

It is straightforward to show that these operators have the
expected properties of projectors, in particular they are
idempotent,

P2
F = PF , P2

B = PB, (29)
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and they constitute a unity decomposition,

PF + PB = 1, PFPB = PBPF = 0. (30)

These projectors also commute with the linear evolution
operator in Eq. (26), and direct calculation shows that their
eigenvectors have propagation constants corresponding to
forward and backward modes propagating in the linear system.
Thus, we can use these projectors to obtain the true forward
and backward propagating field components. If the total field
is given in terms of the auxiliary amplitudes �E±

⊥ , then the
forward portion of the wave is obtained as

EF = (1 1)PF

( �E+
⊥

�E−
⊥

)

= 1

2
[( �E+

⊥ + �E−
⊥ ) + L̂−1/2ζ ( �E+

⊥ − �E−
⊥ )]. (31)

This expression contains the reference wave number, which
might suggest that it depends on our artificial split of the field
in Eq. (17). However, because of Eq. (20), the above expression
reduces to

EF = 1

2
�E⊥ − i

2
L̂−1/2∂z

�E⊥ (32)

and the backward propagating component is obtained as

EB = 1

2
�E⊥ + i

2
L̂−1/2∂z

�E⊥. (33)

As they must be, these forward and backward amplitudes
are independent of the reference wave number. Our aim
is to express the pulse evolution equations in terms of
these directional fields. Because the projector operators are
z independent, the simplest way is to apply them directly to
the propagation equations. In other words, we need to compute

∂zE
F
⊥ = (1 1)PF

(
∂z

�E+
⊥

∂z
�E−

⊥

)
, (34)

∂zE
B
⊥ = (1 1)PB

(
∂z

�E+
⊥

∂z
�E−

⊥

)
. (35)

Inserting the right hand side from Eq. (26) and using the
projector properties of Eqs. (29) and (30), we obtain a pair
of coupled equations for the forward and backward fields,

∂zE
F
⊥ = +i

√
L̂EF

⊥ + i

2
√

L̂
N̂⊥[EF + EB],

(36)

∂zE
B
⊥ = −i

√
L̂EB

⊥ − i

2
√

L̂
N̂⊥[EF + EB].

This is a generalization of the coupled pair of unidirectional
pulse propagation equations (1) and (2). We show later that
in a homogeneous medium, for which we have an explicit
expression for the square root of the Helmholtz operator, these
equations reduce to UPPEs as they should.

Similar to the case for bulk media, Eq. (36) is not the
best for numerical implementation. We transform this system
into a form analogous to that of bulk UPPE (6) such that we
can adopt the same numerical solution strategy. Toward this
purpose, we use amplitudes which will exhibit evolution only
if some nonlinearity is present:

EF
⊥ = e+i

√
L̂zAF

⊥(z), EB
⊥ = e−i

√
L̂zAB

⊥(z). (37)

In this representation, Eq. (36) reads

∂zA
F
⊥ = +i

2
√

L̂
e−i

√
L̂zN̂⊥[e+i

√
L̂zAF + e−i

√
L̂zAB],

(38)

∂zA
B
⊥ = −i

2
√

L̂
e+i

√
L̂zN̂⊥[e+i

√
L̂zAF + e−i

√
L̂zAB].

This shows explicitly that the forward and backward propa-
gating waves are mutually coupled in the nonlinear terms. It
is obvious that for strong nonlinearity, our forward-backward
projection loses its intended meaning, because it can renor-
malize and couple waves propagating in both main directions
[28]. Thus, we arrive at a point where we must adopt an
approximation which will allow us to reduce the full system
to a single unidirectional equation.

D. Unidirectional propagation approximation

Our final step is to adopt the unidirectional approximation,
where we assume that the nature and strength of nonlinearity
is such that only negligible backward propagating fields are
generated. Then, the nonlinear term can be approximated as

N̂⊥[e+i
√

L̂zAF + e−i
√

L̂zAB] ≈ N̂⊥[e+i
√

L̂zAF ] (39)

and the system can be restricted to only the forward-
propagating field:

∂zA
F
⊥(r⊥,ω,z) = + i

2
√

L̂
e−i

√
L̂zN̂⊥[e+i

√
L̂zAF ]. (40)

This is the sought-after generalization of the unidirectional
pulse propagation equation. As expected, the structure of
this system is completely analogous to the bulk UPPEs of
Eq. (6), with the exception that the linear propagator is formally
expressed in terms of a Helmholtz square root operator,
instead of a plane-wave expansion. The most pronounced
difference is that Eq. (40) is natively represented in the mixed
representation. It retains the spectral treatment of the time
dimension and with that, it preserves the ability to treat
chromatic and nonlinear properties of the material exactly. On
the other hand, the transverse dimensions are represented in
real space, which is the natural choice for the implementation
of the linear propagator in a structured medium with strong
refractive index variations.

E. Special case: Reduction to UPPE in a homogeneous medium

Before going into how this pulse evolution equation can
be solved numerically, let us illustrate how it reduces to the
well-known bulk UPPE for a homogeneous medium. First, we
recall that for a homogeneous medium, we know that plane
waves are eigenfunctions of the Helmholtz operator L̂ and that
in the plane-wave representation, the linear propagator reduces
to multiplication by a phase factor given by the propagation
constant kz(ω,k⊥):

e−i
√

L̂z = e−ikz(ω,k⊥)z.

It is therefore sufficient to Fourier transform Eq. (40) from the
(x,y) space to the transverse wave-number space (kx,ky) to
obtain

∂zA
F
⊥(k⊥,ω,z) = + i

2kz

e−ikzzN̂⊥[e+ikzzAF ], (41)
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then using Eq. (37),

∂zE
F
⊥(k⊥,ω,z) = +ikzE

F
⊥(k⊥,ω,z) + i

2kz

N̂⊥[EF ], (42)

and express N̂ in terms of polarization:

∂zE
F = ikzE

F + i

2kz

[
ω2

ε0c2
�P ( �E) − 1

ε0ε
�k�k · �P ( �E)

]
. (43)

Only the transverse components in this equation constitute the
evolution system, but in this full-vector form, it is easy to see
that the operator acting on the polarization term produces the
transverse part of the nonlinear response, namely[

ω2

ε0c2
�P ( �E) − 1

ε0ε
�k�k · �P ( �E)

]
= ω2

ε0c2

[
1 −

�k�k·
k2

]
�P ( �E).

(44)
The projector operator in the square brackets can be replaced
by a sum over projectors on the polarization vectors �es ,[

1 −
�k�k·
k2

]
=

∑
s

�es �es · (45)

Using this in Eq. (44) and inserting it into Eq. (43), we obtain

∂zE
F
⊥(z,ω,k⊥) = ikzE

F
⊥ + iω2

2ε0c2kz

∑
s

�e⊥
s �es · �P ( �E), (46)

which is identical to the homogeneous medium UPPE of
Eq. (1) (with the current density term omitted). Thus, as it
must, the generalized pulse propagation equation (40) passes
this sanity check and reduces to the UPPE if the medium is
homogeneous.

IV. NUMERICAL SOLUTION STRATEGY

In this section we sketch, in broad strokes, an approach for
the numerical solution. It builds on the ODE-based method
for solving UPPE systems and combines it with a wide-angle
beam-propagation solver used to evaluate the linear propagator
exp(iL̂1/2z).

The core of the pulse propagator of Eq. (40) is an ODE
system, with z being the independent variable. The equation is
evaluated at every transverse spatial location r⊥ and frequency
ω while being incremented along the propagation direction
z. During a single ODE step, the right hand side of Eq. (40)
has to be evaluated multiple times at different values of z

which are subject to the choice of the specific ODE algorithm.
Because the integration is normally executed with an adaptive
integration step, one cannot determine beforehand at what
specific z locations the term [exp(iL̂1/2z)A] needs to be
computed—an algorithm is needed to evaluate the right hand
side for any small value of z. For the ODE solver, we
use the open source Gnu Scientific Library (GSL), but any
implementation with the following capabilities can be chosen.
One necessary feature of a suitable ODE library is a driver
for adaptive step control, with a robust algorithm monitoring
the accuracy of the numerical solution. Another necessity
is that the library contains methods which do not require
Jacobian evaluation, because such methods are not suitable for
UPPE-like ODE systems [30]. We typically employ the Runge-
Kutta-Fehlberg method, however, another useful ODE library

feature is the capability to switch easily between different
integration methods. Regarding its structure and method of
solution as an ODE system, the generalized propagation
equation does not differ from an ordinary UPPE. What is
different is the implementation of the linear propagator.

Because the linear propagator is diagonal in angular
frequency, this task is equivalent to a set of uncoupled
beam-propagation problems. In other words, the action of
exp(iL̂1/2z)A only requires one independent BPM-like update
for each ω resolved in the simulation. This portion of
the algorithm is therefore “embarrassingly parallel,” with
perfect balance and no interdependencies between calculations
performed for different angular frequencies. There are many
wide-angle BPM methods available, and any of them can
be utilized, in principle. For instance, one can evaluate the
linear propagator by a Padé approximant. Defining β2(ω) ≡
ω2ε(ω)/c2, the dominant part of the Helmholtz operator, one
writes

ei
√

L̂�z = eiβ
√

1+X̂�z =
∏
k

X̂ + ak

X̂ + bk

. (47)

The coefficients ak,bk depend on �z and are chosen as to
reproduce the Taylor expansion of the left hand side. For
example,

4i + (i − β�z)X̂

4i + (i + β�z)X̂
eiβ�z (48)

is second-order accurate in X̂ with the error scaling as
∼β�zX̂3. Various higher order approximations can be con-
structed in the same spirit. If the operator X̂ acts in a nontrivial
way along both spatial dimensions x,y, it is often further
split into “one-dimensional” components so that the resulting
matrices are band diagonal.

Similar techniques can be used to compute the inverse
square root of L̂ that acts on the nonlinear response term
in Eq. (40). However, this operator can be approximated
by L̂1/2 ≈ ωn(ω)/c, as is usually done in filamentation
simulations [30]. This is sufficient unless the spatial profile of
the nonlinear polarization becomes “focused” to wavelength
scale.

With the linear propagator implemented as a “BPM-based
plug-in,” the solution proceeds in steps with two stages as
follows:

(1) Call the ODE solver. One integration step is executed
that updates the current A(r⊥,ω,z) into the new A(r⊥,ω,z +
�z). The ODE solver algorithm invokes computation of the
right hand side of Eq. (40),

+ i

2β
e−i

√
L̂δzN̂⊥[e+i

√
L̂δzAF ],

which contains two applications of the linear propagator [e.g.,
Eq. (48)] for a substep ±δz. Behind the scenes, the solver
determines the maximum step �z possible on a global scale,
since some parts of the grid may contain finer features, and
require shorter integration steps than others. Unlike the fully
spectral UPPE, the length of the integration step the ODE
solver is permitted to take is bounded from above by the
maximum step allowed by the BPM method used for the linear
propagator.
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(2) Re-align the spectral amplitudes. The point along z at
which A and E amplitudes coincide can, of course, be chosen
arbitrarily. It is advantageous to renew this synchronization
point after each ODE step such that A and E coincide at the
beginning of the ODE step. This is achieved by

AF
⊥ ← e+i

√
L̂�zAF

⊥, (49)

which amounts to yet another application of the linear-problem
propagator to the current solution. Naturally, �z must be
obtained from the ODE solver as the actual length of the last
adaptive integration step. This repeated re-alignment step is
normally implemented in bulk-media UPPE solvers as well.
In that case, however, implementations without it are possible,
in principle. Here, it is crucial that the step length in the linear
propagator is kept small, and application of Eq. (49) ensures
that δz is always smaller than the maximal step allowed in the
ODE solver.

In a nutshell, the above procedure describes the standard
UPPE solution method modified in two ways: First, a BPM-
based propagator is utilized for the (short-step) linear advance-
ment of the optical field, and second, real-space representation
of transverse dimensions is retained at all times.

V. NUMERICAL DEMONSTRATION

In this section, an example is presented to demonstrate
practical application of the method introduced in this paper.
It is motivated by recent experiments with femtosecond
filamentation confined to lossy waveguide structures. One
example, which is of practical interest for power scaling of self-
compressed pulses, utilizes a hollow slab filled with gas that
is delimited by two glass plates [38,39]. Another is a capillary
filled with a highly pressurized gas, which has been used to
generate radiation of extremely high harmonic orders [40]. The
common feature of these experiments is that the light dynamics
can be characterized by the four attributes (A + B + C + D)
we listed in our Introduction. Another common feature is that
when such experiments are simulated numerically, the meth-
ods are typically based on expansion of the electric field into
approximate leaky modes of the corresponding waveguiding
structure. Because the femtosecond wave packet is subject to
extreme nonlinear dynamics, simulation results are, in general,
very sensitive to details of the approximations adopted.

We illustrate the simulation capability of the new gen-
eralized unidirectional pulse propagation equation (gUPPE)
approach on the case of a pressurized capillary excited by a
midinfrared pulse. The parameters we adopt are motivated by
recent experiments (see supplementary material for Ref. [40]).
We consider a capillary with a 200-μm inner radius, pres-
surized to 20 atm with argon, and an index of refraction
difference ncl between the pressurized core and the waveguide
cladding. For simplicity here, we assume constant pressure in
the whole volume, although in practice one must also simulate
a pressure gradient on the input and output of the waveguide.
The input pulse has a wavelength of 3.9 μm and a Gaussian
beam profile collimated at the capillary entrance. A beam waist
of 100 μm is chosen to avoid exposing the glass cladding
to high intensity. The light-gas interaction includes Kerr
self-focusing nonlinearity, strong-field and avalanche ioniza-
tion and corresponding losses, and the defocusing effect of
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FIG. 1. (Color online) Energy loss experienced by an initially
collimated, pulsed Gaussian beam with the beam waist smaller than
the capillary inner diameter. The gUPPE approach (solid black line)
includes proper modeling of loss due to light leaking into the cladding.
The ALMEx method (dashed red line) incorrectly predicts loss vs
propagation distance. Left and right panels present results for different
values of ncl .

freed electrons described in terms of the Drude plasma model
[30].

The numerical approach adopted for this example follows
the strategy described in the previous section. We utilize a BPM
plugin which implements Eq. (48). From a numerical point of
view, the scheme is similar to the well-known Crank-Nicolson
method, and we use the corresponding algorithm. To truncate
the computational domain in the transverse direction, our BPM
plugin uses a perfectly matched layer (PML) as the absorbing
boundary condition.

It is illustrative to start with a purely linear case that
elucidates why the usual method of approximate leaky mode
expansion (ALMEx) may fail in situations with higher order
modes excited. Figure 1 shows energy loss as a function of
propagation distance inside a capillary computed with the
gUPPE method and the standard ALMEx approach. Since
the beam waist of the pulse on entrance to the waveguide is
smaller than the capillary bore, losses due to light leaking into
the capillary cladding are initially very small. This is correctly
reflected in the gUPPE model. Moreover, under propagation,
the pulse is spatially reshaped. The nearly horizontal sections
of the gUPPE curves occur when the pulsed beam barely
touches the glass-gas interface and leakage is reduced. In
contrast, the ALMEx method predicts immediate loss, despite
the fact that the beam is not in contact with the glass interface.
This is because the losses in ALMEx are based on complex-
valued propagation constants ascribed to an orthonormal set
of modes. Consequently, the energy of the wave packet is the
sum of modal energies, and the total energy decrease is always
at least as fast as that of the fundamental mode. In other words,
the leakage losses do not depend on the transverse shape of the
beam inside the hollow waveguide. In order to show that
the relative error in capturing the loss remains comparably the
same, independent of the overall waveguide loss, we present
two examples with different refractive indices of the cladding
ncl . Note that for the realistic case, in which the loss is smaller,
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FIG. 2. (Color online) An example of the spatial profile of the
optical field (taken at the central time slice τ = 0 of the pulse) after
propagation in the nonlinear regime. The dip in the center is caused
by defocusing due to electrons freed by the leading edge of the pulse.
The light leaking into the cladding is evident beyond r = 200 μm,
as is the damping in the PML. The grid used to sample the radial
dimension was chosen equidistant, with 800 points over 0.4 mm total
radius. The propagation distance of this snapshot is z = 1.5 cm.

the relative error in overestimating loss is actually greater.
These issues and their consequences will be discussed in detail
elsewhere.

We next consider the fully nonlinear regime with the
proposed gUPPE framework by simulating the propagation
of a pulse, with a high initial intensity of 1018 W/m2, through
4 cm of a hollow capillary waveguide. The nonlinear dynamics
results in complete spatial and temporal reshaping of the wave
packet (Figs. 2 and 3). It is evident from the fine features
in Fig. 3 that in addition to low-order leaky modes, higher
order modes get significantly excited. If a superposition is
created with sharp spatial structures (such as those due to
self-focusing) localized in the capillary center, the ALMEx
method will introduce unphysical loss that artificially dampens
such nonlinear events. Figure 4 illustrates extreme spectral
broadening. Although it is a common occurrence in nonlinear

FIG. 3. (Color online) Spatiotemporal reshaping of a midinfrared
pulse in a hollow capillary waveguide. The trailing edge of the pulse in
the on-axis region is depleted due to generated plasma. The diagonal
texture visible for r > 200 μm is the outgoing radiation eventually
absorbed in the PML. The propagation distance of this snapshot is
z = 0.5 cm.
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FIG. 4. (Color online) Extreme spectral broadening (supercon-
tinuum). The propagation regime in the hollow waveguide at high
pressure is akin to femtosecond filamentation with the concomit-
tant supercontinuum generation reflecting the extreme nonlinear
evolution.

regimes, methods restricted to a single frequency (or narrow
range), like BPM, fail to capture the physics. Taking all of these
results together, the gUPPE method is seen to successfully
simulate situations with all four of the attributes discussed in
the Introduction.

Naturally, numerical simulation of such rich dynamic evo-
lution requires considerable computational resources. How-
ever, the gUPPE approach performs comparably to ALMEx in
terms of the compute time required, because in both methods,
nonlinearity forces the integration step to be submicron.
Although the BPM-based linear propagators (one for each
angular frequency resolved) do require a larger grid, they are
implemented using a proven and efficient algorithm which
scales linearly with the number of grid points. On the other
hand, the spectral method underlying ALMEx slows down
quadratically with increasing resolution, and requires a full-
matrix spectral transform. As a result, the gUPPE method is
not only a better, more realistic model, but is also competitive
in terms of performance [41].

VI. SUMMARY

We have presented a generalization of the unidirectional
pulse propagation equation suitable for structures character-
ized by material interfaces parallel to the pulse propagation
direction and by strong differences between the properties of
the constituent materials. While the main result of Eq. (40)
is somewhat intuitive, we show a rigorous derivation based
on identification of the forward and backward propagating
wave components. These are expressed in terms of projection
operators [Eqs. (27) and (28)] akin to those we have previously
used in bulk media [12]. They allow expression of the
generalized UPPE in terms of the linear propagator, and they
“isolate” the nonlinear interactions with the medium, such
that the evolution is described in terms of spectral amplitudes
which only evolve due to nonzero nonlinearity.

The generalized UPPE uses a mixed representation: spec-
tral for the frequency (time) dimension and real space for
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the transverse (to the direction of propagation) dimensions.
The linear propagator can be based on one of the many
available beam-propagation methods. The concrete choice of
the method will depend on the given geometry. For example,
the pressurized capillary considered in this paper was treated
using a radial WA-BPM with a PML boundary to absorb
leaking radiation. Independent of the chosen BPM approach,
the numerical solution strategy developed previously for bulk-
media UPPEs can be used with relatively minor modifications.
Our illustrations show that extreme nonlinear dynamics can
be efficiently simulated, having compute times comparable to
more typical algorithms.

Let us also note that we have dealt with the so-called
z-propagated version of pulse propagation equations. Similar
formulation is possible also for its counterpart, in which the
evolution is integrated along the temporal axis (t-propagated
equations). On the one hand, this requires additional

assumptions to be able to calculate nonlinear responses
[30], but on the other hand it simplifies calculation of the
longitudinal field components. It could therefore be of practical
interest to also explore such t-propagated versions of this
method.

There is an increasing interest in extreme nonlinear optics
confined to waveguiding structures of different kinds. It is
therefore expected that our results will find application in
various implementations of efficient pulse propagation solvers,
especially situations in which both the geometry of the
structure and waveform reshaping due to nonlinear interactions
play important roles.
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